
 Easy Java Simulations

Appendices for the
manual
for version 3.1

Francisco Esquembre
Universidad de Murcia

Ejs uses Open Source Physics tools
by Wolfgang Christian

August 2002

http://fem.um.es/Ejs

http://fem.um.es/Ejs

Easy Java Simulations 3.1. Appendices

Contents

A. Programming algorithms in Java... 3
Declaration of variables ... 4
Operators .. 4
Sentences and Expressions... 6
Bifurcations... 6
Loops (while, do and for) ... 7
Special sentences... 8
Library methods ... 9

B. Some useful Java classes .. 11
How to use Java classes.. 11
java.lang.Math .. 12
java.awt.Color... 13
java.awt.Font .. 14
java.awt.Dimension .. 15
java.awt.Point ... 15
java.awt.Rectangle.. 15
java.text.DecimalFormat ... 15

C. About Html .. 19
The body tag.. 19
Block level elements.. 21

Headings...21
Address...21
Paragraphs ..22
Lists ..22
Preformatted Text...24
Div and Center..25
Blockquote..26
Form ...26
Hr - horizontal rules..26
Tables ...26

Text level elements.. 30
Font style elements ...30
Phrase Elements ...31
Form fields ...32
Select ..32
TextArea...32

Special Text level Elements.. 32
The A (anchor) element..32
Img - inline images...33
Applet ...35
Font...37
Basefont..38
Br..38

© Francisco Esquembre, August 2002 1

Easy Java Simulations 3.1. Appendices

Map...39

Character Entities for ISO Latin-1... 40

D. Reference pages for elements for the view 43
Containers ... 45

Frame..46
Dialog ...49
Panel ...52
SplitPanel..54
TabbedPanel ...56
DrawingPanel ...58
PlottingPanel ..61
DrawingPanel3D ..64

Basic elements ... 67
Button ...68
Checkbox..70
RadioButton..72
Slider ..74
Field (or NumberField)...77
TextField ..79
Label...81
TextArea...83
Bar ..85
Sound..87

Drawables.. 89
Particle..90
Arrow ...92
Image..94
Text...96
Trace...98
Poligon ...100
LightBulb..102
ParticleSet...104
ArrowSet ..107
TextSet ...113
TraceSet..115
Surface..117
VectorField...119
Lattice...122
CheckerField ..124
Contour...126
SurfacePlot ...128
Sphere...130
Cube ...133
Cilinder...135
Cone ...138

E. Ejs advanced reference ... 141
Personalizing the list of view elements.. 141
Running Ejs with different sets of options ... 142

© Francisco Esquembre, August 2002 2

Easy Java Simulations 3.1. Appendices

© Francisco Esquembre, August 2002 3

A
A. Programming algorithms in Java

“Do I need to learn Java?” - This is perhaps the most frequently heard
question when people consider using Ejs to create their own simulations.

The answer to this question is … yes and no.

When writing the equations of a simulation, we certainly need to express our
formulas using algorithms in Java language. Hence we need to know a bit of
Java. However, what I would call ‘learning Java’ is much more than just this
bit.

What I mean is that Java is a very complete and powerful programming
language, which comes together with a wide set of utility libraries, and
learning it in full takes considerable time. But learning just what we need to
program our algorithms in Java is much, much simpler.

If you have a look at a book about Java that you may have at hand, you will
see that it has a chapter at the beginning of the book devoted to the declaration
of variables, to expressions and sentences. I usually refer to this chapter as
‘chapter 2’ because it is usually found at the beginning of the book, after an
introductory chapter. After this chapter 2, you will find that there are a lot
more chapters, those which deal with object orientation, classes and many
other nice features…But we only need chapter 2!

To summarize, the answer to the above question is that you only need to learn
how to express your algorithms in Java language and that this is a reasonably
accessible task.

You can of course go and read chapter 2 of your book. However, I have
prepared this appendix just in case you want to take a very quick tour through
the basic constructions right now: declaration of variables, sentences and
expressions, bifurcations and loops. Please do not consider this appendix as a
serious tutorial on Java, but it might help you to get started, specially if you
have had previous experience with any (yes, I mean any) other programming
language.

Easy Java Simulations 3.1. Appendices

Finally, having a look at the examples distributed with Ejs will also help you
learn what you need.

Declaration of variables
Even when we have chosen to declare variables using our variables editor,
sometimes it is necessary to define a local variable (a variable that is only
visible within a give page, or within a block of code). This is done by writing
the type, the name and, if desired, the initial value. Examples:

int i=0; double z;

Local variables can only be used within the block in which they are declared. If
they are declared at the beginning of one of our model pages, then they can
only be used within this page.

Operators
Java operators are:

Arithmetic. These can be either binary: addition (+), subtraction (-),
multiplication (*) and division (/) or unary: plus (+), minus (-), increment (++)
and decrement (--).

The last two are less common and are used to increase or decrease,
respectively, by one unit, the variable to which they apply. If they appear in an
expression before the variable, then the variable is first increased or decreased,
and then used in the expression. If they appear after the variable, then just the
opposite, it is first used and then changed.

Java includes a special version of the binary addition operator (+) that can be
used with constants or variables of type String. It is therefore correct to write
the sentences:

double x = 1.0;
String text = “The value of x is = “ + x;

which will produce the desired result.

Assignation. These are the equal (=) operator and its combinations with the
binary arithmetic operators (+=, -=, *= and /=). Please notice that the
expression x = x+1, is not an equation, but implies giving x the value it had,
incremented by one. Combinations always have a similar meaning; for
instance, x += 3 is equivalent to x = x + 3.

Comparison. These are used to compare two expressions. The resulting value
is always a boolean: true or false. They are the greater (>), greater or equal

© Francisco Esquembre, August 2002 4

Easy Java Simulations 3.1. Appendices

(>=), smaller (<), smaller or equal (<=), equal (= =) (please distinguish it from
the assignation operator =) and different (!=) operators.

Logical. These are used to build logical expressions, concatenating logical
values (true or false): and (&&), or (||) and not (!). Please do not make the
(frequent) mistake of writing and as a single &, or or as a single | .

Finally, there are some special operators called bit operators, which we don’t
cover here, since it is unlikely that you’ll use them in your algorithms.

The precedence of the operators is important (what to do in the expression
x*y/z, for instance?) and usually coincides with the one used when we write
mathematical formulas. If there is any doubt, the use of parentheses is
recommended.

It is also important to try not to mix variables of different types. By this we
mean using variables of different types in the same operation. If we are forced
to do so, then we must do a type casting, which consists in forcing the change
of the type of one variable. When this happens from smaller to bigger type, it is
done automatically. In the opposite direction, we must do it explicitly.

Assume, for instance, that i is an integer variable (int) and x a variable of type
double. The sentence x = i*x; will cause no problems and the value of i will be
converted to a double before performing the calculation. However, the
compiler would complain at the assignation i = x*2.0; so we must explicitly
write i = (int) (x*2.0);

A frequent source of errors is to forget that the computer always tries to make a
given computation using the simplest possible type of variables. I will
exemplify the danger with an example. If you ask the computer to evaluate

double x = 1/2;

the result is that x will have zero as value! This is because, since 1 and 2 are
integers, the computer makes the computation using integer arithmetic, ad in
integer arithmetic ½ is cero!. To avoid such problems, the correct expression
would be

double x = 1.0/2.0;

Now, the computer realizes that 1.0 and 2.0 are doubles and does the
computation properly.

© Francisco Esquembre, August 2002 5

Easy Java Simulations 3.1. Appendices

Sentences and Expressions
An expression is a set of variables joined by operators, and it instructs the
computer to execute a given operation or operations.

A sentence consists in an expression followed by a semicolon. We usually
write a sentence per line to enhance readability, although we can write more
than one sentence in the same line.

If a line includes two consecutive bars (//) we assume that the line contains a
comment. So the computer ignores the part of the line from the two bars to the
end.

Typical simple examples of sentences and comments are:
// Comment on the next lines
i = 1;
z = 3.0*(x+y); // We compute here the value of z

If we want to include a comment that spans through several lines it is better to
write these lines between the symbols /* and */, instead of writing two bars at
the beginning of each line.

Bifurcations
Bifurcations are used to execute only a given sentence from a group of two or
more. The first type of bifurcation is given by the conditional clause if. Its
structure is

if (booleanExpression) expr1;
else expr2;

At this point, the computer evaluates the expression and, if true, executes the
expression expr1 and, if false, the expression expr2. The second sentence, the
else, is optional; that is, there might be no alternative to executing expr1.

If we want to include more than one sentences within an if-else we can group
them to form a block of code, delimited by the symbols start of block ({) and
end of block (}). As in

if (booleanExpression) {
 expr1;
 expr2;
}
else expr3;

(notice that we have indented, to enhance readability, the lines within the
block).

© Francisco Esquembre, August 2002 6

Easy Java Simulations 3.1. Appendices

The second type of bifurcation is given by the switch construction. It is used to
build a comparison of the same non-boolean expression with several values.
For instance:

switch (expression) {
 case value1 : expr1; break;
 case value2 : expr2; break;
 default: expr3; break;
}

where each case sentence corresponds to a different possible value of the
expression. If the expression takes none of the provided values, then an
optional default sentence allows executing a sentence.

There may be more than one sentence within each case. The last of these
sentences must always be a break, indicating the end of the case. If any of
these breaks is omitted, then when the case sentence is executed, it also
executes the next ones, until a break or the end of the switch construction is
found.

Last example can also be written as a sequence of nested if-else as follows
(though the appearance is not so elegant):

if (expression==value1) expr1;
else if (expression==value2) expr2;
else expr3;

Finally, there is also a special operator (very seldom used) called conditional
which, in a sense, can be considered to produce a bifurcation. It has the format

booleanExpression ? res1 : res2

It evaluates the boolean expression, returning the value res1 if it is true, and the
value res2 if it is false.

Loops (while, do and for)
A loop is used to execute a sentence, or block of sentences, several times. We
indicate one or more logical conditions and, while they are valid, a block of
code, delimited again by the symbols { and }, is executed (brackets can be
omitted if there is only one sentence in the block).

Loops can be while, do-while and for constructions. The formats are the
following:

while (booleanExpression) {
 expr1;
 …
}

do {
 expr1;
 …

© Francisco Esquembre, August 2002 7

Easy Java Simulations 3.1. Appendices

} while (booleanExpression);

for (initialization; booleanExpression; increment) {
 expr1;
 ...;
}

The first two are similar; the only difference is that in the while the boolean
expression is evaluated before the block of sentences is executed, while in the
do-while it is evaluated afterwards (which means that the block is executed at
least once).

The for construction above is equivalent to
initialization;
while (booleanExpression) {
 expr1;
 …
 increment;
}

and is used very frequently for processes that are executed an integer number
of times. A classical example (which also uses the feature of Java of declaring
local variables almost everywhere) is:

for (int i=0;i<10; i++) {
 expr1; // i is often used in these expressions,
 // for instance as the index of an array
 ...;
}

The result is that the block executes exactly ten times. The initialization and
increment sentences can hold more than one expression, which must then be
separated by commas. Example:

int j, max=10;
for (int i=0, j=i+100;i<max; i++, j+=2) {
 expr1;
 ...;
}

Special sentences
break. This sentence, which can be used in the block of a bifurcation or a loop,
causes the program to leave the block without executing the lines that follow it.

continue. It is used only in loops and stops the current iteration without
executing the lines that follow the sentence. Then, the program evaluates the
control boolean expression. If this is still true, the loop is executed again.

In both cases, these sentences are included usually as a result of a check (an if,
for instance) in the middle of the block.

© Francisco Esquembre, August 2002 8

Easy Java Simulations 3.1. Appendices

return. This sentence causes the program to leave the method currently
executing. In our case, since methods originate from pages of code, the return
prevents the rest of the page from being executed.

Library methods
Finally, besides the constructions we have seen, every language has a series of
libraries of predefined routines (mathematical functions, graphic libraries, …)
that can be used just by including a call to them in the code, as if they were an
expression.

In Java, these routines are called methods and the libraries classes. There are
classes and methods for almost anything one can think of, and the art of being
an advanced Java programmer includes a deep knowledge of them.

Although a full coverage of all classes is evidently out of the scope of this
manual, the next appendix is devoted to introduce to you some of the classes
that you may most surely need when creating your simulations with Ejs.

Your knowledge of the basic programming of algorithm in Java would be
certainly incomplete if you didn’t read about the class Math in the next
appendix. This class lets you use typical mathematical functions that are bound
to need while coding your mathematical expressions and formulas.

The good news is that, although the world of classes is a big one, you can live
with just a basic knowledge of some of them. Hence I encourage you to have a
look at the next appendix.

© Francisco Esquembre, August 2002 9

Easy Java Simulations 3.1. Appendices

This page intentionally left blank

© Francisco Esquembre, August 2002 10

Easy Java Simulations 3.1. Appendices

© Francisco Esquembre, August 2002 11

B
B. Some useful Java classes

How to use Java classes
The first thing we need to describe is how to correctly call java library routines,
called methods, from your code. Methods do not live on their own, but belong
to libraries called classes. Classes group both methods and data devoted to
perform a certain task. There are classes for virtually everything: for
mathematical functions, for describing colors for your interface, for fonts, for
file access, for internet connections, …

This appendix is not a tutorial of Java classes and methods, but rather a cook
book where you may find the solution for some of the typical tasks that you
may want to do when using Ejs.

For this reason, thought there are two types of methods, class methods and
instance methods, we will consider mostly class (also called static) methods,
which are easier to use and that most frequently cover all basic needs.

A call to a static method of any these classes is made by putting together the
name of the class and the name of the method plus two parentheses, which
enclose the calling arguments, if any. For instance, the correct form of calling
the mathematical sine function is:

y = java.lang.Math.sin (x);

where x and y are variables of type double.

The name for a java class is always qualified, as you see above. This means
that the class usually belongs to a grup of classes which in turn form part of a
bigger family. For this reason, the name must be very descriptive (and long!),
to help distinguish between classes which may have the same name, but
belong to a different group or family.

For instance, in the example above, the sin method belogs to the class Math
which lives in the group lang of the family java. As a second example, the
class that creates and handles colors for the interface is called java.awt.Color.
The class name is Color, the group is awt and the family is again java.

Easy Java Simulations 3.1. Appendices

There is an excpetion. Although the fully qualified name for the class of
mathematical functions is java.lang.Math, Java makes an exception with it, and
in fact with all the classes of the group java.lang (the most frequently used),
and allows you to call it simply by its name, in this case Math. This is why the
example above can also be written correctly as

y = Math.sin (x);

This is very useful to help keep mathematical expressions shorter. But recall
that this is an exception and that only works with classes of the group
java.lang.

We complete this appendix listing some of the classes that you may want to
use while coding your simulation in Ejs.

java.lang.Math

(or simply Math)
This is certainly the class that you will most frequently use, because you will
need it for your mathematical algorithms.

Recall that the proper way of calling any of its static methods is (for instance
for the sine function):

y = Math.sin (x);

where x and y are variables of type double.

Here is the table of its most popular static methods.

Method Output value

double abs (double x) Absolute value of x

double acos (double x) Arc cosine of x, in the range of 0 through
pi

double asin (double x) Arc sine of x, in the range of –pi/2 through
pi/2

double atan (double x) Arc tangent of x, in the range of –pi/2
through pi/2

double ceil (double x) The smallest integer greater than or equal
to x

© Francisco Esquembre, August 2002 12

Easy Java Simulations 3.1. Appendices

double cos (double x) Cosine of x

double exp (double x) Exponential number e raised to the power
of x (ex)

double floor (double x) The largest integer number smaller than or
equal to x

double log (double x) Natural logarithm (base e) of x (ln x)

double max (double x, double y) The greater of x and y

int max (int a, int b) The greater of the integers a and b

double min (double x, double y) The smaller of x and y

int min (int a, int b) The smaller of the integers a and b

double pow (double x, double y) x to the power of y (xy)

double random () A random number between 0.0 and 1.0,
excluding 1.0.

double rint (double x) The integer number closest to x

long round (double x) The integer number (given as a long)
closest to x

double sin (double x) Sine of x

double sqrt (double x) Square root of x

double tan (double x) Tangent of x

double atan2 (double a, double b) Converts rectangular coordinates (b, a) to
polar (r, theta)

java.awt.Color
This class is used to help you describe a color for an element of the interface.
The colors are specified by a RGB (red, green and blue) scheme in a way that
every color is specified by giving three integer coordinates from 0 to 255,
corresponding to the level of red, green and blue basic color components that
mix up to create the full color.

© Francisco Esquembre, August 2002 13

Easy Java Simulations 3.1. Appendices

For instance, the numbers 255,0,0 correspond to a pure red, while 0,255,0
corresponds to green, 0,0,255 to blue and 255,255,255 corresponds to white.

Besides this, a color can be given a fourth coordinate which specifies its
transparency, also from 0 (fully transparent) to 255 (opaque).

Colors need to be constructed. That is, they are created by calling one of the special
methods of the class called constructors. Constructors always hold the same name as the
class (although there may be more than one if they accept different parameters).

For instance, a new color with coordinates 0,192,255 (a pale blue) would be constructed
using the call:

myColor = new java.awt.Color (0,192,255);

where myColor is a variable of type Object. If we want a semi transparent version of it,
we would call

myColor = new java.awt.Color (0,192,255,127);

The class java.awt.Color has also some predefined colors that you can use directly,
without the need to created them. For instance, you could include the following code in
your simulation:

myColor = java.awt.Color.blue;

These predefined colors are black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white and yellow.

Finally, any color can be made darker or brighter using the instance methods
(an instance method is a method that belongs to the created color, not to the
class) darker() and brighter(), respectively. For instance, you can make your
color darker by issuing

myColor = myColor.darker();

or can turn it into a bright red by issuing
myColor = java.awt.Color.red.brighter();

java.awt.Font
This class is used to manage fonts for the texts to be written in the simulation
interface. A font is specified by giving its family name, its style and its size.

The family name is a string that must be chosen from the list of available fonts
in your system. The best way to know which font families are available is to
use Ejs font editor and see what families it offers you.

The type must be one of the system constants java.awt.Font.PLAIN,
java.awt.Font.BOLD, java.awt.Font.ITALIC, or a bitwise union of these last
two, i.e., java.awt.Font.BOLD | java.awt.Font.ITALIC.

© Francisco Esquembre, August 2002 14

Easy Java Simulations 3.1. Appendices

Finally the size is an integer constant that indicates the point size (in pixels of
the font).

Similarly to colors, fonts need to be constructed (see java.awt.Color above).

For instance a very common medium-size, bold font is created using the sentence
myFont = new java.awt.Font (”Dialog”, java.awt.Font.BOLD,12);

where myFont is a variable of type Object.

One can also obtain fonts derived from other fonts. This is done using the instance
methods deriveFont (float size) and deriveFont (int type). This is very useful if you
want to change one of the characteristics of your font withouh affecting the others.

For instance, to make myFont above bigger, you can issue
myFont = myFont .deriveFont (16.0f);

java.awt.Dimension
This class helps you specify sizes. Its elements (or instances) are created using
a call to the constructor of the class

java.awt.Dimension (int width, int height);

This class could be used to change dyn amically the size of a basic element of
your view.

java.awt.Point
This class helps you specify position in the screen coordinates. Its elements (or
instances) are created using a call to the constructor of the class

java.awt.Point (int x, int y);

This class could be used to change dynamically the location of a basic element
of your view.

java.awt.Rectangle
This class helps you specify a rectangular area in the screen coordinates. Its
elements (or instances) are created using a call to the constructor of the class

java.awt.Rectangle (int x, int y, int width, int height);

java.text.DecimalFormat

java.text.DecimalFormat is a Java class that formats decimal numbers.
Describing DecimalFormat in full would be too lengthy here, but I can extract
a basic information (which in most cases suffices) from its reference page.

© Francisco Esquembre, August 2002 15

Easy Java Simulations 3.1. Appendices

A DecimalFormat pattern contains a positive and negative subpattern, for
example, "#,##0.00;(#,##0.00)". Each subpattern has a prefix, numeric part,
and suffix. The negative subpattern is optional; if absent, then the positive
subpattern prefixed with the localized minus sign '-' is used as the negative
subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there is an
explicit negative subpattern, it serves only to specify the negative prefix and
suffix; the number of digits, minimal digits, and other characteristics are all the
same as the positive pattern. That means that "#,##0.0#;(#)" produces precisely
the same behavior as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, thousands
separators, decimal separators, etc. may be set to arbitrary values, and they will
appear properly during formatting. However, care must be taken that the
symbols and strings do not conflict, or parsing will be unreliable. For example,
either the positive and negative prefixes or the suffixes must be distinct for
DecimalFormat to be able to distinguish positive from negative values. (If they
are identical, then DecimalFormat will behave as if no negative subpattern was
specified.) Another example is that the decimal separator and thousands
separator should be distinct characters, or parsing will be impossible.

Illegal patterns, such as "#.#.#" or "#.###,###", will cause DecimalFormat to
throw an IllegalArgumentException with a message that describes the
problem.

Pattern Syntax
 pattern := pos_pattern{';' neg_pattern}
 pos_pattern := {prefix}number{suffix}
 neg_pattern := {prefix}number{suffix}
 number := integer{'.' fraction}{exponent}
 prefix := '\u0000'..'\uFFFD' - special_characters
 suffix := '\u0000'..'\uFFFD' - special_characters
 integer := min_int | '#' | '#' integer | '#' ',' integer
 min_int := '0' | '0' min_int | '0' ',' min_int
 fraction := '0'* '#'*
 exponent := 'E' '0' '0'*

 Notation:
 X* 0 or more instances of X
{ X } 0 or 1 instances of X
 X | Y either X or Y
 X..Y any character from X up to Y, inclusive
 S - T characters in S, except those in T

© Francisco Esquembre, August 2002 16

Easy Java Simulations 3.1. Appendices

Practical hint

After all this terrible jargon, here goes a practical suggestion. Use patterns like
this one

Name = #.00;Name = - #.00

if you want to have two decimal points (add more zeroes if you want more) for
doubles and a pattern like

Name = 0;Name = - 0

for integers. In both cases substitute Name with the name of the variable which
you want to display.

© Francisco Esquembre, August 2002 17

Easy Java Simulations 3.1. Appendices

This page intentionally left blank

© Francisco Esquembre, August 2002 18

Easy Java Simulations 3.1. Appendices

© Francisco Esquembre, August 2002 19

C
C. About Html

In order to write nice introductory pages in Ejs you need to know the basics of
Html language. The HyperText Markup Language (HTML) is a simple
markup language used to create hypertext documents that are portable from
one platform to another.

Learning the basics of it is rather an easy task, since writing Html text consist
in writing what you want to write, together with some tags here and there that
provide some organization and/or different visual appearance to your text.

Surely you can find several good books on the subject, but as I did with Java, I
have prepared an appendix on the subject for you.

Instead of writing my own introduction to html, I have taken the text that
follows from the original source at http://www.w3.org/TR/REC-html32.html.
This is not however the complete text, I have edited it to fit my interests.

In particular, since Ejs takes care of the head part of the Html text, only tags
that apply to the body part of it are included.

Again, please do not take this appendix as a serious tutorial on Html, but rather
as a quick revision of Html most important tags.

Note: Theoretically, the html editor included with Ejs should accept html text in
its version 3.2, with only some minor exceptions (at least this is what the
reference for this editor reads). I know that these exceptions include the
applet tag (which I found reasonable). However, I haven’t been able to find a
list of all unsupported html 3.2 features.

The body tag
The key attributes are: BACKGROUND, BGCOLOR, TEXT, LINK, VLINK and
ALINK. These can be used to set a repeating background image, plus
background and foreground colors for normal text and hypertext links.

Example:
 <body bgcolor=white text=black link=red vlink=maroon alink=fuchsia>

http://www.w3.org/TR/REC-html32.html

Easy Java Simulations 3.1. Appendices

bgcolor

Specifies the background color for the document body. See below for the
syntax of color values.

text

Specifies the color used to stroke the document's text. This is generally used
when you have changed the background color with the BGCOLOR or
BACKGROUND attributes.

link

Specifies the color used to stroke the text for unvisited hypertext links.

vlink

Specifies the color used to stroke the text for visited hypertext links.

alink

Specifies the highlight color used to stroke the text for hypertext links at the
moment the user clicks on the link.

background

Specifies a URL for an image that will be used to tile the document
background.

Colors are given in the sRGB color space as hexadecimal numbers (e.g.
COLOR="#C0FFC0"), or as one of 16 widely understood color names. These
colors were originally picked as being the standard 16 colors supported with
the Windows VGA palette.

Color names and sRGB values

 Black = "#000000" Green = "#008000"

 Silver = "#C0C0C0" Lime = "#00FF00"

 Gray = "#808080" Olive = "#808000"

 White = "#FFFFFF" Yellow = "#FFFF00"

 Maroon = "#800000" Navy = "#000080"

 Red = "#FF0000" Blue = "#0000FF"

 Purple = "#800080" Teal = "#008080"

© Francisco Esquembre, August 2002 20

Easy Java Simulations 3.1. Appendices

 Fuchsia = "#FF00FF" Aqua = "#00FFFF"

Block level elements
Most elements that can appear in the document body fall into one of two
groups: block level elements which cause paragraph breaks, and text level
elements which don't. Common block level elements include H1 to H6
(headers), P (paragraphs) LI (list items), and HR (horizontal rules). Common
text level elements include EM, I, B and FONT (character emphasis), A
(hypertext links), IMG and APPLET (embedded objects) and BR (line breaks).
Note that block elements generally act as containers for text level and other
block level elements (excluding headings and address elements), while text
level elements can only contain other text level elements.

Headings

H1, H2, H3, H4, H5 and H6 are used for document headings. You always need
the start and end tags. H1 elements are more important than H2 elements and
so on, so that H6 elements define the least important level of headings. More
important headings are generally rendered in a larger font than less important
ones. Use the optional ALIGN attribute to set the text alignment within a
heading, e.g.

 <H1 ALIGN=CENTER> ... centered heading ... </H1>

The default is left alignment, but this can be overridden by an enclosing DIV
or CENTER element.

Address

The ADDRESS element requires start and end tags, and specifies information
such as authorship and contact details for the current document. User agents
should render the content with paragraph-breaks before and after. Note that the
content is restricted to paragraphs, plain text and text-like elements.

Example:
<ADDRESS>
Newsletter editor

J.R. Brown

8723 Buena Vista, Smallville, CT 01234

Tel: +1 (123) 456 7890
</ADDRESS>

© Francisco Esquembre, August 2002 21

Easy Java Simulations 3.1. Appendices

Paragraphs

The P element is used to markup paragraphs. It is a container and requires a
start tag. The end tag is optional as it can always be inferred by the parser. User
agents should place paragraph breaks before and after P elements. The
rendering is user agent dependent, but text is generally wrapped to fit the space
available.

Example:
 <P>This is the first paragraph.
 <P>This is the second paragraph.

Paragraphs are usually rendered flush left with a ragged right margin. The
ALIGN attribute can be used to explicitly specify the horizontal alignment:

align=left

The paragraph is rendered flush left.
align=center

The paragraph is centered.
align=right

The paragraph is rendered flush right.

For example:
<p align=center>This is a centered paragraph.
<p align=right>and this is a flush right paragraph.

The default is left alignment, but this can be overridden by an enclosing DIV
or CENTER element.

Lists
List items can contain block and text level items, including nested lists,
although headings and address elements are excluded.

U N O R D E R E D L I S T S

Unordered lists take the form:

 ... first list item
 ... second list item
 ...

The UL element is used for unordered lists. Both start and end tags are always
needed. The LI element is used for individual list items. The end tag for LI
elements can always be omitted. Note that LI elements can contain nested

© Francisco Esquembre, August 2002 22

Easy Java Simulations 3.1. Appendices

lists. The COMPACT attribute can be used as a hint to the user agent to render
lists in a more compact style.

The TYPE attribute can be used to set the bullet style on UL and LI elements.
The permitted values are "disc", "square" or "circle". The default generally
depends on the level of nesting for lists.

• with <li type=disc>

� with <li type=square>

o with <li type=circle>

O R D E R E D (I . E . N U M B E R E D) L I S T S

Ordered (i.e. numbered) lists take the form:

 ... first list item
 ... second list item
 ...

The OL START attribute can be used to initialize the sequence number (by
default it is initialized to 1). You can set it later on with the VALUE attribute on
LI elements. Both of these attributes expect integer values. You can't indicate
that numbering should be continued from a previous list, or to skip missing
values without giving an explicit number.

The COMPACT attribute can be used as a hint to the user agent to render lists in
a more compact style. The OL TYPE attribute allows you to set the numbering
style for list items:

Type Numbering style
1 Arabic numbers 1, 2, 3, ...
a lower alpha a, b, c, ...
A upper alpha A, B, C, ...
i lower roman i, ii, iii, ...
I upper roman I, II, III, ...

D E F I N I T I O N L I S T S

Definition lists take the form:
 <DL>
 <DT> term name
 <DD> term definition

© Francisco Esquembre, August 2002 23

Easy Java Simulations 3.1. Appendices

 ...
 </DL>

DT elements can only act as containers for text level elements, while DD
elements can hold block level elements as well, excluding headings and
address elements.

For example:
<DL>
<DT>Term 1<dd>This is the definition of the first term.
<DT>Term 2<dd>This is the definition of the second term.
</DL>

which could be rendered as:
Term 1
 This is the definition of the first term.
Term 2
 This is the definition of the second term.

The COMPACT attribute can be used with the DL element as a hint to the user
agent to render lists in a more compact style.

D I R A N D M E N U

These elements have been part of HTML from the early days. They are
intended for unordered lists similar to UL elements. User agents are
recommended to render DIR elements as multicolumn directory lists, and
MENU elements as single column menu lists. In practice, Mosaic and most
other user agents have ignored this advice and instead render DIR and MENU
in an identical way to UL elements.

Preformatted Text

The PRE element can be used to include preformatted text. User agents render
this in a fixed pitch font, preserving spacing associated with white space
characters such as space and newline characters. Automatic word-wrap should
be disabled within PRE elements.

PRE has the same content model as paragraphs, excluding images and
elements that produce changes in font size, e.g. IMG, BIG, SMALL, SUB, SUP
and FONT.

A few user agents support the WIDTH attribute. It provides a hint to the user
agent of the required width in characters. The user agent can use this to select
an appropriate font size or to indent the content appropriately.

© Francisco Esquembre, August 2002 24

Easy Java Simulations 3.1. Appendices

Here is an example of a PRE element; a verse from Shelley (To a Skylark):
<PRE>
 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.
</PRE>

which is rendered as:
 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.

The horizontal tab character (encoded in Unicode, US ASCII and ISO 8859-1
as decimal 9) should be interpreted as the smallest non-zero number of spaces
which will leave the number of characters so far on the line as a multiple of 8.
Its use is strongly discouraged since it is common practice when editing to set
the tab-spacing to other values, leading to misaligned documents.

X M P , L I S T I N G A N D P L A I N T E X T

These are obsolete tags for preformatted text that predate the introduction of
PRE. User agents may support these for backwards compatibility. Authors
should avoid using them in new documents!

Div and Center

DIV elements can be used to structure HTML documents as a hierarchy of
divisions. The ALIGN attribute can be used to set the default horizontal
alignment for elements within the content of the DIV element. Its value is
restricted to LEFT, CENTER or RIGHT, and is defined in the same way as for
the paragraph element <P>.

Note that because DIV is a block-like element it will terminate an open P
element. Other than this, user agents are not expected to render paragraph
breaks before and after DIV elements. CENTER is directly equivalent to DIV
with ALIGN=CENTER. Both DIV and CENTER require start and end tags.

CENTER was introduced by Netscape before they added support for the
HTML 3.0 DIV element. It is retained in HTML 3.2 on account of its
widespread deployment.

© Francisco Esquembre, August 2002 25

Easy Java Simulations 3.1. Appendices

Blockquote

This is used to enclose block quotations from other works. Both the start and
end tags are required. It is often rendered indented, e.g.

They went in single file, running like hounds on a strong scent, and an eager light was
in their eyes. Nearly due west the broad swath of the marching Orcs tramped its ugly
slot; the sweet grass of Rohan had been bruised and blackened as they passed.

from "The Two Towers" by J.R.R. Tolkien.

Form
Note: Since it is very unlikely that you want to include input forms into your
introductions, I have suppressed the information about this tag. Please consult
the web page referenced above to learn more about forms.

Hr - horizontal rules

Horizontal rules may be used to indicate a change in topic. In a speech based
user agent, the rule could be rendered as a pause.

HR elements are not containers so the end tag is forbidden. The attributes are:
ALIGN, NOSHADE, SIZE and WIDTH.

align

This determines whether the rule is placed at the left, center or right of the
space between the current left and right margins for align=left,
align=center or align=right respectively. By default, the rule is
centered.

noshade

This attribute requests the user agent to render the rule in a solid color rather
than as the traditional two colour "groove".

size

This can be used to set the height of the rule in pixels.

width

This can be used to set the width of the rule in pixels (e.g. width=100) or as
the percentage between the current left and right margins (e.g.
width="50%"). The default is 100%.

Tables

Tables take the general form:

© Francisco Esquembre, August 2002 26

Easy Java Simulations 3.1. Appendices

 <TABLE BORDER=3 CELLSPACING=2 CELLPADDING=2 WIDTH="80%">
 <CAPTION> ... table caption ... </CAPTION>
 <TR><TD> first cell <TD> second cell
 <TR> ...
 ...
 </TABLE>

The attributes on TABLE are all optional. By default, the table is rendered
without a surrounding border. The table is generally sized automatically to fit
the contents, but you can also set the table width using the WIDTH attribute.
BORDER, CELLSPACING and CELLPADDING provide further control over
the table's appearence. Captions are rendered at the top or bottom of the table
depending on the ALIGN attribute.

Each table row is contained in a TR element, although the end tag can always
be omitted. Table cells are defined by TD elements for data and TH elements
for headers. Like TR, these are containers and can be given without trailing end
tags. TH and TD support several attributes: ALIGN and VALIGN for aligning
cell content, ROWSPAN and COLSPAN for cells which span more than one row
or column. A cell can contain a wide variety of other block and text level
elements including form fields and other tables.

The TABLE element always requires both start and end tags. It supports the
following attributes:

align

This takes one of the case insensitive values: LEFT, CENTER or RIGHT. It
specifies the horizontal placement of the table relative to the current left and
right margins. It defaults to left alignment, but this can be overridden by an
enclosing DIV or CENTER element.

width

In the absence of this attribute the table width is automatically determined
from the table contents. You can use the WIDTH attribute to set the table width
to a fixed value in pixels (e.g. WIDTH=212) or as a percentage of the space
between the current left and right margins (e.g. WIDTH="80%").

border

This attribute can be used to specify the width of the outer border around the
table to a given number of pixels (e.g. BORDER=4). The value can be set to
zero to suppress the border altogether. In the absence of this attribute the
border should be suppressed. Note that some browsers also accept <TABLE
BORDER> with the same semantics as BORDER=1.

© Francisco Esquembre, August 2002 27

Easy Java Simulations 3.1. Appendices

cellspacing

In traditional desktop publishing software, adjacent table cells share a common
border. This is not the case in HTML. Each cell is given its own border which
is separated from the borders around neighboring cells. This separation can be
set in pixels using the CELLSPACING attribute, (e.g. CELLSPACING=10).
The same value also determines the separation between the table border and
the borders of the outermost cells.

cellpadding

This sets the padding in pixels between the border around each cell and the
cell's contents.

The CAPTION element has one attribute ALIGN which can be either
ALIGN=TOP or ALIGN=BOTTOM. This can be used to force the caption to be
placed above the top or below the bottom of the table respectively. Most user
agents default to placing the caption above the table. CAPTION always
requires both start and end tags. Captions are limited to plain text and text-level
elements as defined by the %text entity. Block level elements are not
permitted.

The TR or table row element requires a start tag, but the end tag can always be
left out. TR acts as a container for table cells. It has two attributes:

align

Sets the default horizontal alignment of cell contents. It takes one of the case
insensitive values: LEFT, CENTER or RIGHT and plays the same role as the
ALIGN attribute on paragraph elements.

valign

This can be used to set the default vertical alignment of cell contents within
each cell. It takes one of the case insensitive values: TOP, MIDDLE or
BOTTOM to position the cell contents at the top, middle or bottom of the cell
respectively.

There are two elements for defining table cells. TH is used for header cells and
TD for data cells. This distinction allows user agents to render header and data
cells in different fonts, and enables speech based browsers to do a better job.
The start tags for TH and TD are always needed but the end tags can be left out.
Table cells can have the following attributes:

© Francisco Esquembre, August 2002 28

Easy Java Simulations 3.1. Appendices

nowrap

The presence of this attribute disables automatic word wrap within the contents
of this cell (e.g. <TD NOWRAP>). This is equivalent to using the
entity for non-breaking spaces within the content of the cell.

rowspan

This takes a positive integer value specifying the number of rows spanned by
this cell. It defaults to one.

colspan

This takes a positive integer value specifying the number of columns spanned
by this cell. It defaults to one.

align

Specifies the default horizontal alignment of cell contents, and overrides the
ALIGN attribute on the table row. It takes the same values: LEFT, CENTER
and RIGHT. If you don't specify an ALIGN attribute value on the cell, the
default is left alignment for <td> and center alignment for <th> although
you can override this with an ALIGN attribute on the TR element.

valign

Specifies the default vertical alignment of cell contents, overriding the
VALIGN attribute on the table row. It takes the same values: TOP, MIDDLE
and BOTTOM. If you don't specify a VALIGN attribute value on the cell, the
default is middle although you can override this with a VALIGN attribute on
the TR element.

width

Specifies the suggested width for a cell content in pixels excluding the cell
padding. This value will normally be used except when it conflicts with the
width requirements for other cells in the same column.

height

Specifies the suggested height for a cell content in pixels excluding the cell
padding. This value will normally be used except when it conflicts with the
height requirements for other cells in the same row.

Tables are commonly rendered in bas-relief, raised up with the outer border as
a bevel, and individual cells inset into this raised surface. Borders around

© Francisco Esquembre, August 2002 29

Easy Java Simulations 3.1. Appendices

individual cells are only drawn if the cell has explicit content. White space
doesn't count for this purpose with the exception of .

The algorithms used to automatically size tables should take into account the
minimum and maximum width requirements for each cell. This is used to
determine the minimum and maximum width requirements for each column
and hence for the table itself.

Cells spanning more than one column contribute to the widths of each of the
columns spanned. One approach is to evenly apportion the cell's minimum and
maximum width between these columns, another is to weight the apportioning
according to the contributions from cells that don't span multiple columns.

For some user agents it may be necessary or desirable to break text lines within
words. In such cases a visual indication that this has occurred is advised.

The minimum and maximum width of nested tables contribute to the minimum
and maximum width of the cell in which they occur. Once the width
requirements are known for the top level table, the column widths for that table
can be assigned. This allows the widths of nested tables to be assigned and
hence in turn the column widths of such tables. If practical, all columns should
be assigned at least their minimum widths. It is suggested that any surplus
space is then shared out proportional to the difference between the minimum
and maximum width requirements of each column.

Note that pixel values for width and height refer to screen pixels, and should be
multiplied by an appropriate factor when rendering to very high resolution
devices such as laser printers. For instance if a user agent has a display with 75
pixels per inch and is rendering to a laser printer with 600 dots per inch, then
the pixel values given in HTML attributes should be multiplied by a factor of
8.

Text level elements
These don't cause paragraph breaks. Text level elements that define character
styles can generally be nested. They can contain other text level elements but
not block level elements.

Font style elements
These all require start and end tags, e.g.

 This has some bold text.

Text level elements must be properly nested - the following is in error:

© Francisco Esquembre, August 2002 30

Easy Java Simulations 3.1. Appendices

 This has some bold and <I>italic text</I>.

User agents should do their best to respect nested emphasis, e.g.
 This has some bold and <I>italic text</I>.

Where the available fonts are restricted or for speech output, alternative means
should be used for rendering differences in emphasis.

TT teletype or monospaced text

I italic text style

B bold text style

U underlined text style

STRIKE strike-through text style

BIG places text in a large font

SMALL places text in a small font

SUB places text in subscript style

SUP places text in superscript style

Note: future revisions to HTML may be phase out STRIKE in favor of the
more concise "S" tag from HTML 3.0.

Phrase Elements

These all require start and end tags, e.g.
 This has some emphasized text.

EM basic emphasis typically rendered in an italic font

STRONG strong emphasis typically rendered in a bold font

DFN defining instance of the enclosed term

CODE used for extracts from program code

SAMP used for sample output from programs, and scripts etc.

KBD used for text to be typed by the user

VAR used for variables or arguments to commands

CITE used for citations or references to other sources

© Francisco Esquembre, August 2002 31

Easy Java Simulations 3.1. Appendices

Form fields

Select

TextArea
Note: Since it is very unlikely that you want to include input fields (forms,
select menus and text areas) into your introductions, I have suppressed the
information about these tag. Please consult the web page referenced above to
learn more about forms and menus.

Special Text level Elements
The A (anchor) element
Anchors can't be nested and always require start and end tags. They are used to
define hypertext links and also to define named locations for use as targets for
hypertext links, e.g.

 The way to happiness.

and also to define named locations for use as targets for hypertext links, e.g.
 <h2>545 Tech Square - Hacker's Paradise</h2>

name

This should be a string defining unique name for the scope of the current
HTML document. NAME is used to associate a name with this part of a
document for use with URLs that target a named section of a document.

href

Specifies a URL acting as a network address for the linked resource. This
could be another HTML document, a PDF file or an image etc.

rel

The forward relationship also known as the "link type". It can be used to
determine to how to deal with the linked resource when printing out a
collection of linked resources.

rev

This defines a reverse relationship. A link from document A to document B
with REV=relation expresses the same relationship as a link from B to A
with REL=relation. REV=made is sometimes used to identify the

© Francisco Esquembre, August 2002 32

Easy Java Simulations 3.1. Appendices

document author, either the author's email address with a mailto URL, or a link
to the author's home page.

title

An advisory title for the linked resource.

Img - inline images

Used to insert images. IMG is an empty element and so the end tag is
forbidden. Images can be positioned vertically relative to the current textline or
floated to the left or right. See BR with the CLEAR attribute for control over
textflow. e.g.

IMG elements support the following attributes:

src

This attribute is required for every IMG element. It specifies a URL for the
image resource, for instance a GIF, JPEG or PNG image file.

alt

This is used to provide a text description of the image and is vital for
interoperability with speech-based and text only user agents.

align

This specifies how the image is positioned relative to the current textline in
which it occurs:

align=top
positions the top of the image with the top of the current text line. User agents
vary in how they interpret this. Some only take into account what has occurred
on the text line prior to the IMG element and ignore what happens after it.

align=middle
aligns the middle of the image with the baseline for the current textline.

align=bottom
is the default and aligns the bottom of the image with the baseline.

align=left
floats the image to the current left margin, temporarily changing this margin, so
that subsequent text is flowed along the image's righthand side. The rendering
depends on whether there is any left aligned text or images that appear earlier
than the current image in the markup. Such text (but not images) generally

© Francisco Esquembre, August 2002 33

Easy Java Simulations 3.1. Appendices

forces left aligned images to wrap to a new line, with the subsequent text
continuing on the former line.

align=right
floats the image to the current right margin, temporarily changing this margin,
so that subsequent text is flowed along the image's lefthand side. The rendering
depends on whether there is any right aligned text or images that appear earlier
than the current image in the markup. Such text (but not images) generally
forces right aligned images to wrap to a new line, with the subsequent text
continuing on the former line.
Note that some browsers introduce spurious spacing with multiple left or right
aligned images. As a result authors can't depend on this being the same for
browsers from different vendors. See BR for ways to control text flow.

width

Specifies the intended width of the image in pixels. When given together with
the height, this allows user agents to reserve screen space for the image before
the image data has arrived over the network.

height

Specifies the intended height of the image in pixels. When given together with
the width, this allows user agents to reserve screen space for the image before
the image data has arrived over the network.

border

When the IMG element appears as part of a hypertext link, the user agent will
generally indicate this by drawing a colored border (typically blue) around the
image. This attribute can be used to set the width of this border in pixels. Use
border=0 to suppress the border altogether. User agents are recommended
to provide additional cues that the image is clickable, e.g. by changing the
mouse pointer.

hspace

This can be used to provide white space to the immediate left and right of the
image. The HSPACE attribute sets the width of this white space in pixels. By
default HSPACE is a small non-zero number.

vspace

This can be used to provide white space above and below the image The
VSPACE attribute sets the height of this white space in pixels. By default
VSPACE is a small non-zero number.

© Francisco Esquembre, August 2002 34

Easy Java Simulations 3.1. Appendices

usemap

This can be used to give a URL fragment identifier for a client-side image map
defined with the MAP element.

ismap

When the IMG element is part of a hypertext link, and the user clicks on the
image, the ISMAP attribute causes the location to be passed to the server. This
mechanism causes problems for text-only and speech-based user agents.
Whenever its possible to do so use the MAP element instead.

Here is an example of how you use ISMAP:

The location clicked is passed to the server as follows. The user agent derives a
new URL from the URL specified by the HREF attribute by appending `?' the
x coordinate `,' and the y coordinate of the location in pixels. The link is then
followed using the new URL. For instance, if the user clicked at at the location
x=10, y=27 then the derived URL will be:
"/cgibin/navbar.map?10,27". It is generally a good idea to suppress
the border and use graphical idioms to indicate that the image is clickable.

Note that pixel values refer to screen pixels, and should be multiplied by an
appropriate factor when rendering to very high resolution devices such as laser
printers. For instance if a user agent has a display with 75 pixels per inch and is
rendering to a laser printer with 600 dots per inch, then the pixel values given
in HTML attributes should be multiplied by a factor of 8.

Applet

Requires start and end tags. This element is supported by all Java enabled
browsers. It allows you to embed a Java applet into HTML documents.

APPLET uses associated PARAM elements to pass parameters to the applet.

Following the PARAM elements, the content of APPLET elements should be
used to provide an alternative to the applet for user agents that don't support
Java. Java-compatible browsers ignore this extra HTML code. You can use it
to show a snapshot of the applet running, with text explaining what the applet
does. Other possibilities for this area are a link to a page that is more useful for
the Java-ignorant browser, or text that taunts the user for not having a Java-
compatible browser.

Here is a simple example of a Java applet:

© Francisco Esquembre, August 2002 35

Easy Java Simulations 3.1. Appendices

 <applet code="Bubbles.class" width=500 height=500>

 Java applet that draws animated bubbles.
 </applet>

Here is another one using a PARAM element:
 <applet code="AudioItem" width=15 height=15>
 <param name=snd value="Hello.au|Welcome.au">
 Java applet that plays a welcoming sound.
 </applet>

codebase = codebaseURL

This optional attribute specifies the base URL of the applet -- the directory or
folder that contains the applet's code. If this attribute is not specified, then the
document's URL is used.

code = appletFile

This required attribute gives the name of the file that contains the applet's
compiled Applet subclass. This file is relative to the base URL of the applet. It
cannot be absolute.

alt = alternateText

This optional attribute specifies any text that should be displayed if the browser
understands the APPLET tag but can't run Java applets.

name = appletInstanceName

This optional attribute specifies a name for the applet instance, which makes it
possible for applets on the same page to find (and communicate with) each
other.

width=pixels
height = pixels

These required attributes give the initial width and height (in pixels) of the
applet display area, not counting any windows or dialogs that the applet brings
up.

align = alignment

This attribute specifies the alignment of the applet. This attribute is defined in
exactly the same way as the IMG element. The permitted values are: top,
middle, bottom, left and right. The default is bottom.

© Francisco Esquembre, August 2002 36

http://www.w3.org/TR/REC-html32.html

Easy Java Simulations 3.1. Appendices

vspace=pixels
hspace = pixels

These optional attributes specify the number of pixels above and below the
applet (VSPACE) and on each side of the applet (HSPACE). They're treated the
same way as the IMG element's VSPACE and HSPACE attributes.

The PARAM element is used to pass named parameters to applet:
 <PARAM NAME = appletParameter VALUE = value>

PARAM elements are the only way to specify applet-specific parameters.
Applets read user-specified values for parameters with the getParameter()
method.

name = applet parameter name

value = parameter value

SGML character entities such as é and ¹ are expanded
before the parameter value is passed to the applet. To include an & character
use &.

Note: PARAM elements should be placed at the start of the content for the
APPLET element.

Font
Requires start and end tags. This allows you to change the font size and/or
color for the enclosed text. The attributes are: SIZE and COLOR. Font sizes
are given in terms of a scalar range defined by the user agent with no direct
mapping to point sizes etc. The FONT element may be phased out in future
revisions to HTML.

size

This sets the font size for the contents of the font element. You can set size to
an integer ranging from 1 to 7 for an absolute font size, or specify a relative
font size with a signed integer value, e.g. size="+1" or size="-2". This
is mapped to an absolute font size by adding the current base font size as set by
the BASEFONT element (see below).

color

© Francisco Esquembre, August 2002 37

Easy Java Simulations 3.1. Appendices

Used to set the color to stroke the text. Colors are given as RGB in
hexadecimal notation or as one of 16 widely understood color names defined
as per the BGCOLOR attribute on the BODY element.

Some user agents also support a FACE attribute which accepts a comma
separated list of font names in order of preference. This is used to search for an
installed font with the corresponding name. FACE is not part of HTML 3.2.

The following shows the effects of setting font to absolute sizes:

size=1 size=2 size=3 size=4 size=5 size=6 size=7

The following shows the effect of relative font sizes using a base font size of 3:

size=-4 size=-3 size=-2 size=-1 size=+1 size=+2 size=+3 size=+4

The same thing with a base font size of 6:

size=-4 size=-3 size=-2 size=-1 size=+1 size=+2

size=+3 size=+4
Basefont

Used to set the base font size. BASEFONT is an empty element so the end tag
is forbidden. The SIZE attribute is an integer value ranging from 1 to 7. The
base font size applies to the normal and preformatted text but not to headings,
except where these are modified using the FONT element with a relative font
size.

Br

Used to force a line break. This is an empty element so the end tag is
forbidden. The CLEAR attribute can be used to move down past floating
images on either margin. <BR CLEAR=LEFT> moves down past floating
images on the left margin, <BR CLEAR=RIGHT> does the same for floating
images on the right margin, while <BR CLEAR=ALL> does the same for such
images on both left and right margins.

© Francisco Esquembre, August 2002 38

Easy Java Simulations 3.1. Appendices

Map

The MAP element provides a mechanism for client-side image maps. These can
be placed in the same document or grouped in a separate document although
this isn't yet widely supported. The MAP element requires start and end tags. It
contains one or more AREA elements that specify hotzones on the associated
image and bind these hotzones to URLs.

Here is a simple example for a graphical navigational toolbar:

<map name="map1">
 <area href=guide.html alt="Access Guide" shape=rect coords="0,0,118,28">
 <area href=search.html alt="Search" shape=rect coords="184,0,276,28">
 <area href=shortcut.html alt="Go" shape=rect coords="118,0,184,28">
 <area href=top10.html alt="Top Ten" shape=rect coords="276,0,373,28">
</map>

The MAP element has one attribute NAME which is used to associate a name
with a map. This is then used by the USEMAP attribute on the IMG element to
reference the map via a URL fragment identifier. Note that the value of the
NAME attribute is case sensitive.

The AREA element is an empty element and so the end tag is forbidden. It
takes the following attributes: SHAPE, COORDS, HREF, NOHREF and ALT.
The SHAPE and COORDS attributes define a region on the image. If the
SHAPE attribute is omitted, SHAPE="RECT" is assumed.

shape=rect coords="left-x, top-y, right-x, bottom-y"
shape=circle coords="center-x, center-y, radius"
shape=poly coords="x1,y1, x2,y2, x3,y3, ..."

Where x and y are measured in pixels from the left/top of the associated image.
If x and y values are given with a percent sign as a suffix, the values should be
interpreted as percentages of the image's width and height, respectively. For
example:

SHAPE=RECT COORDS="0, 0, 50%, 100%"

The HREF attribute gives a URL for the target of the hypertext link. The
NOHREF attribute is used when you want to define a region that doesn't act as
a hotzone. This is useful when you want to cut a hole in an underlying region
acting as a hotzone.

If two or more regions overlap, the region defined first in the map definition
takes precedence over subsequent regions. This means that AREA elements
with NOHREF should generally be placed before ones with the HREF attribute.

© Francisco Esquembre, August 2002 39

Easy Java Simulations 3.1. Appendices

The ALT attribute is used to provide text labels which can be displayed in the
status line as the mouse or other pointing device is moved over hotzones, or for
constructing a textual menu for non-graphical user agents. Authors are strongly
recommended to provide meaningful ALT attributes to support interoperability
with speech-based or text-only user agents.

Character Entities for ISO Latin-1
The following table provides a reference for those who want to include special
characters in their html text, like á, ü or ê. The way to do so is to include in the
html code either the keyword &name, where name stands for the name of any
of the special characters as specified in the table below, or the keyword &#
plus the corresponding number which you can find in the table. For instance,
the code for á is either á or á.
<!-- (C) International Organization for Standardization 1986
 Permission to copy in any form is granted for use with
 conforming SGML systems and applications as defined in
 ISO 8879, provided this notice is included in all copies.
 This has been extended for use with HTML to cover the full
 set of codes in the range 160-255 decimal.
-->
<!-- Character entity set. Typical invocation:
 <!ENTITY % ISOlat1 PUBLIC
 "ISO 8879-1986//ENTITIES Added Latin 1//EN//HTML">
 %ISOlat1;
-->
 <!ENTITY nbsp CDATA " " -- no-break space -->
 <!ENTITY iexcl CDATA "¡" -- inverted exclamation mark -->
 <!ENTITY cent CDATA "¢" -- cent sign -->
 <!ENTITY pound CDATA "£" -- pound sterling sign -->
 <!ENTITY curren CDATA "¤" -- general currency sign -->
 <!ENTITY yen CDATA "¥" -- yen sign -->
 <!ENTITY brvbar CDATA "¦" -- broken (vertical) bar -->
 <!ENTITY sect CDATA "§" -- section sign -->
 <!ENTITY uml CDATA "¨" -- umlaut (dieresis) -->
 <!ENTITY copy CDATA "©" -- copyright sign -->
 <!ENTITY ordf CDATA "ª" -- ordinal indicator, feminine -->
 <!ENTITY laquo CDATA "«" -- angle quotation mark, left -->
 <!ENTITY not CDATA "¬" -- not sign -->
 <!ENTITY shy CDATA "­" -- soft hyphen -->
 <!ENTITY reg CDATA "®" -- registered sign -->
 <!ENTITY macr CDATA "¯" -- macron -->
 <!ENTITY deg CDATA "°" -- degree sign -->
 <!ENTITY plusmn CDATA "±" -- plus-or-minus sign -->
 <!ENTITY sup2 CDATA "²" -- superscript two -->
 <!ENTITY sup3 CDATA "³" -- superscript three -->
 <!ENTITY acute CDATA "´" -- acute accent -->
 <!ENTITY micro CDATA "µ" -- micro sign -->
 <!ENTITY para CDATA "¶" -- pilcrow (paragraph sign) -->
 <!ENTITY middot CDATA "·" -- middle dot -->
 <!ENTITY cedil CDATA "¸" -- cedilla -->
 <!ENTITY sup1 CDATA "¹" -- superscript one -->

© Francisco Esquembre, August 2002 40

Easy Java Simulations 3.1. Appendices

 <!ENTITY ordm CDATA "º" -- ordinal indicator, masculine -->
 <!ENTITY raquo CDATA "»" -- angle quotation mark, right -->
 <!ENTITY frac14 CDATA "¼" -- fraction one-quarter -->
 <!ENTITY frac12 CDATA "½" -- fraction one-half -->
 <!ENTITY frac34 CDATA "¾" -- fraction three-quarters -->
 <!ENTITY iquest CDATA "¿" -- inverted question mark -->
 <!ENTITY Agrave CDATA "À" -- capital A, grave accent -->
 <!ENTITY Aacute CDATA "Á" -- capital A, acute accent -->
 <!ENTITY Acirc CDATA "Â" -- capital A, circumflex accent -->
 <!ENTITY Atilde CDATA "Ã" -- capital A, tilde -->
 <!ENTITY Auml CDATA "Ä" -- capital A, dieresis or umlaut
mark -->
 <!ENTITY Aring CDATA "Å" -- capital A, ring -->
 <!ENTITY AElig CDATA "Æ" -- capital AE diphthong (ligature)
-->
 <!ENTITY Ccedil CDATA "Ç" -- capital C, cedilla -->
 <!ENTITY Egrave CDATA "È" -- capital E, grave accent -->
 <!ENTITY Eacute CDATA "É" -- capital E, acute accent -->
 <!ENTITY Ecirc CDATA "Ê" -- capital E, circumflex accent -->
 <!ENTITY Euml CDATA "Ë" -- capital E, dieresis or umlaut
mark -->
 <!ENTITY Igrave CDATA "Ì" -- capital I, grave accent -->
 <!ENTITY Iacute CDATA "Í" -- capital I, acute accent -->
 <!ENTITY Icirc CDATA "Î" -- capital I, circumflex accent -->
 <!ENTITY Iuml CDATA "Ï" -- capital I, dieresis or umlaut
mark -->
 <!ENTITY ETH CDATA "Ð" -- capital Eth, Icelandic -->
 <!ENTITY Ntilde CDATA "Ñ" -- capital N, tilde -->
 <!ENTITY Ograve CDATA "Ò" -- capital O, grave accent -->
 <!ENTITY Oacute CDATA "Ó" -- capital O, acute accent -->
 <!ENTITY Ocirc CDATA "Ô" -- capital O, circumflex accent -->
 <!ENTITY Otilde CDATA "Õ" -- capital O, tilde -->
 <!ENTITY Ouml CDATA "Ö" -- capital O, dieresis or umlaut
mark -->
 <!ENTITY times CDATA "×" -- multiply sign -->
 <!ENTITY Oslash CDATA "Ø" -- capital O, slash -->
 <!ENTITY Ugrave CDATA "Ù" -- capital U, grave accent -->
 <!ENTITY Uacute CDATA "Ú" -- capital U, acute accent -->
 <!ENTITY Ucirc CDATA "Û" -- capital U, circumflex accent -->
 <!ENTITY Uuml CDATA "Ü" -- capital U, dieresis or umlaut
mark -->
 <!ENTITY Yacute CDATA "Ý" -- capital Y, acute accent -->
 <!ENTITY THORN CDATA "Þ" -- capital THORN, Icelandic -->
 <!ENTITY szlig CDATA "ß" -- small sharp s, German (sz
ligature) -->
 <!ENTITY agrave CDATA "à" -- small a, grave accent -->
 <!ENTITY aacute CDATA "á" -- small a, acute accent -->
 <!ENTITY acirc CDATA "â" -- small a, circumflex accent -->
 <!ENTITY atilde CDATA "ã" -- small a, tilde -->
 <!ENTITY auml CDATA "ä" -- small a, dieresis or umlaut mark
-->
 <!ENTITY aring CDATA "å" -- small a, ring -->
 <!ENTITY aelig CDATA "æ" -- small ae diphthong (ligature) --
>
 <!ENTITY ccedil CDATA "ç" -- small c, cedilla -->
 <!ENTITY egrave CDATA "è" -- small e, grave accent -->
 <!ENTITY eacute CDATA "é" -- small e, acute accent -->
 <!ENTITY ecirc CDATA "ê" -- small e, circumflex accent -->
 <!ENTITY euml CDATA "ë" -- small e, dieresis or umlaut mark
-->
 <!ENTITY igrave CDATA "ì" -- small i, grave accent -->

© Francisco Esquembre, August 2002 41

Easy Java Simulations 3.1. Appendices

 <!ENTITY iacute CDATA "í" -- small i, acute accent -->
 <!ENTITY icirc CDATA "î" -- small i, circumflex accent -->
 <!ENTITY iuml CDATA "ï" -- small i, dieresis or umlaut mark
-->
 <!ENTITY eth CDATA "ð" -- small eth, Icelandic -->
 <!ENTITY ntilde CDATA "ñ" -- small n, tilde -->
 <!ENTITY ograve CDATA "ò" -- small o, grave accent -->
 <!ENTITY oacute CDATA "ó" -- small o, acute accent -->
 <!ENTITY ocirc CDATA "ô" -- small o, circumflex accent -->
 <!ENTITY otilde CDATA "õ" -- small o, tilde -->
 <!ENTITY ouml CDATA "ö" -- small o, dieresis or umlaut mark
-->
 <!ENTITY divide CDATA "÷" -- divide sign -->
 <!ENTITY oslash CDATA "ø" -- small o, slash -->
 <!ENTITY ugrave CDATA "ù" -- small u, grave accent -->
 <!ENTITY uacute CDATA "ú" -- small u, acute accent -->
 <!ENTITY ucirc CDATA "û" -- small u, circumflex accent -->
 <!ENTITY uuml CDATA "ü" -- small u, dieresis or umlaut mark
-->
 <!ENTITY yacute CDATA "ý" -- small y, acute accent -->
 <!ENTITY thorn CDATA "þ" -- small thorn, Icelandic -->
 <!ENTITY yuml CDATA "ÿ" -- small y, dieresis or umlaut mark
-->

© Francisco Esquembre, August 2002 42

Easy Java Simulations 3.1. Appendices

© Francisco Esquembre, August 2002 43

D
D. Reference pages for elements for

the view

This appendix provides a reference page for each class of elements that can be
used to build a view within Ejs. Each reference page contains a description of
the element class and its main uses, as well as a table that lists all the properties
for elements in this class.

The elements are grouped by category and presented in the same order as they
appear in Ejs view panel.

However, the actual number of elements that you may find in your copy of Ejs
can vary from what is listed here. If you find that you have some that are not
included here, this surely means that you have a later release of the software
(that includes new elements) and you should update this appendix from the
sever http://fem.um.es/Ejs.

http://fem.um.es/Ejs

Easy Java Simulations 3.1. Appendices

If you see elements listed here that do not appear in your copy of Ejs, this can
also mean that the software has been configured to provide a reduced set of
elements in order to simplify its use. Ask your administrator about it, if you
need any of these other elements.

© Francisco Esquembre, August 2002 44

Easy Java Simulations 3.1. Appendices

Containers

© Francisco Esquembre, August 2002 45

Easy Java Simulations 3.1. Appendices

Frame

Icon : (when it is the main window)

Caption: A top level window

Description: A Frame is a container element that displays in a separate
window. When a frame is closed (closed, not minimized) the simulation exits.

Frames have an internal boolean variable that corresponds to its visibility on
the screen (that is, it is true if the frame is shown and false if it is hidden).
Since the user can hide the dialog by clicking on its window icon controls, this
allows the user to change the value of the variable.

The typical use of this variable is to associate it with the variable of a
Checkbox basic element so that a whole window can be shown/hidden when
the checkbox is selected/unselected.

Frames trigger no action but, as said above, they have the property to exit the
application when they are closed.

Table of Properties
Name Description Possible values

Title The text to be displayed as the
title for the frame's window

Constant: Any string is valid, spaces
are allowed between words, but are
trimmed from the beginning and the
end of the text
Variable: A variable of type String

Layout The layout policy for the frame,
see chapter 6 of the manual

Constant: One of the following:
border, flow, grid, hbox or vbox.
• border accepts two optional

parameters, the horizontal and

© Francisco Esquembre, August 2002 46

Easy Java Simulations 3.1. Appendices

vertical separation between
childrens. Hence, both border and
border:h,v (h and v in pixels) are
valid

• flow requires an extra parameter,
flow:align, where align is the
desired horizontal alignment for
the children: either left, center or
right. It also accepts two optional
parameters for the gaps between
children.

• Grid requires two parameters,
grid:x,y (where x is the number of
rows and y the number of
columns). It also accepts two extra
parameters for the gaps between
children.

Variable: An Object variable of the
class java.awt.Layout

Location The position of the frame in the
screen

Constant: The x and y integer screen
coordinates of the upper-left corner,
separated by commas. For example,
0,0 sets the frame at the upper-left
corner of the screen.
The special value center, places the
frame at the center of the screen.
Variable: An Object variable of the
class java.awt.Point

Visible The visibility of the frame Constant: Either true or false.
Variable: A variable of type boolean

Size The size of the frame in the
screen

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma.
For example, 200,200 sets a squared
frame of 200x200 pixels
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the foreground
of the element and for its children
(unless children set their own
value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

© Francisco Esquembre, August 2002 47

Easy Java Simulations 3.1. Appendices

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

© Francisco Esquembre, August 2002 48

Easy Java Simulations 3.1. Appendices

Dialog

Icon :

Caption: A dialog window

Description: A Dialog is a container element that displays in a separate
window. Unlike frames, closing a dialog does not exit the simulation. Dialogs
have the peculiarity that they always show on top of the last frame that has
been created before them (if there is any). That is, the previous frame can not
hide the dialog.

Dialogs have an internal boolean variable that corresponds to its visibility on
the screen (that is, it is true if the dialog is shown and false if it is hidden).
Since the user can hide the dialog by clicking on its window icon controls, this
allows the user to change the value of the variable.

The typical use of this variable is to associate it with the variable of a
Checkbox basic element so that a whole window can be shown/hidden when
the checkbox is selected/unselected.

Dialogs trigger no action.
Table of Properties

Name Description Possible values
Title The text to be displayed as the

title for the dialog's window
Constant: Any string is valid, spaces
are allowed between words, but are
trimmed from the beginning and the
end of the text
Variable: A variable of type String

Layout The layout policy for the dialog,
see chapter 6 of the manual

Constant: One of the following:
border, flow, grid, hbox or vbox.

© Francisco Esquembre, August 2002 49

Easy Java Simulations 3.1. Appendices

• border accepts two optional
parameters, the horizontal and
vertical separation between
childrens. Hence, both border and
border:h,v (h and v in pixels) are
valid

• flow requires an extra parameter,
flow:align, where align is the
desired horizontal alignment for
the children: either left, center or
right. It also accepts two optional
parameters for the gaps between
children.

• Grid requires two parameters,
grid:x,y (where x is the number of
rows and y the number of
columns). It also accepts two extra
parameters for the gaps between
children.

Variable: An Object variable of the
class java.awt.Layout

Location The position of the dialog in the
screen

Constant: The x and y integer screen
coordinates of the upper-left corner,
separated by a comma. The special
value center, places the dialog at the
center of the screen.
Variable: An Object variable of the
class java.awt.Point

Visible The visibility of the dialog Constant: Either true or false.
Variable: A variable of type boolean

Size The size of the dialog in the
screen

Constant: The width and height
integer dimensions in screen
coordinates, separated by commas. For
example, 200,200 sets a squared
dialog of 200x200 pixels
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the foreground
of the element and for its children
(unless children set their own
value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

© Francisco Esquembre, August 2002 50

Easy Java Simulations 3.1. Appendices

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

© Francisco Esquembre, August 2002 51

Easy Java Simulations 3.1. Appendices

Panel

Icon :

Caption: A basic container panel

Description: A Panel is a basic container element. It is used to accommodate
children according to a given layout policy, as specified by its Layout property.

A panel can be made visible or hidden by modifying its Visible property. This
is useful to show/hide certain elements from the view according to the
simulation’s logic. The panel cannot change the value of this variable directly.

Panels trigger no action.
Table of Properties

Name Description Possible values
Layout The layout policy for the panel,

see chapter 6 of the manual
Constant: One of the following:
border, flow, grid, hbox or vbox.
• border accepts two optional

parameters, the horizontal and
vertical separation between
childrens. Hence, both border and
border:h,v (h and v in pixels) are
valid

• flow requires an extra parameter,
flow:align, where align is the
desired horizontal alignment for
the children: either left, center or
right. It also accepts two optional
parameters for the gaps between
children.

• Grid requires two parameters,
grid:x,y (where x is the number of
rows and y the number of
columns). It also accepts two extra
parameters for the gaps between

© Francisco Esquembre, August 2002 52

Easy Java Simulations 3.1. Appendices

children.
Variable: An Object variable of the
class java.awt.Layout

Border An empty area surrounding the
panel

Constant: The top, left, bottom and
right space, in pixels, separated by
commas. For example, 5,10,5,10
leaves 5 pixels in the vertical margins
and 10 in the horizontal ones
Variable: An Object variable of the
class java.awt.Rectangle

Visible The visibility of the panel Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the panel.
Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by commas
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the foreground
of the element and for its children
(unless children set their own
value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 53

Easy Java Simulations 3.1. Appendices

SplitPanel

Icon :

Caption: A container with two separated areas

Description: A SplitPanel is a container element that can hold up to two
children. It separates its screen area in two parts, either horizontally or
vertically, and assigns each of these parts to its children. It can also display a
divider that can be used to dynamically resize the children.

Similar to basic panels, a split panel can be made visible or hidden by
modifying its Visible property. This is useful to show/hide certain elements
from the view according to the simulation’s logic. The split panel cannot
change the value of this variable directly.

Split panels trigger no action.
Table of Properties

Name Description Possible values
Orientation The direction in which to

establish the separation
Constant: Either horizontal or
vertical
Variable: A variable of type int

One touch Whether it should provide a UI
widget to collapse/expand the
divider

Constant: Either true or false.
Variable: A variable of type boolean

Visible The visibility of the panel Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the panel.
Parents can modify this,

Constant: The width and height
integer dimensions in screen

© Francisco Esquembre, August 2002 54

Easy Java Simulations 3.1. Appendices

according to their layout coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the foreground
of the element and for its children
(unless children set their own
value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 55

Easy Java Simulations 3.1. Appendices

TabbedPanel

Icon :

Caption: A container with tabs

Description: A TabbedPanel is a container element that accommodates
children one on top of the other and provides a tab system that allows the user
to select (by clicking on the corresponding tab) which of the children must be
visible at a given moment. Tabs display the name of the child.

Similar to basic panels, a tabbed panel can be made visible or hidden by
modifying its Visible property. This is useful to show/hide certain elements
from the view according to the simulation’s logic. The tabbed panel cannot
change the value of this variable directly.

Tabbed panels trigger no action.
Table of Properties

Name Description Possible values
Tab Pos Where to place the tabs Constant: Either top, bottom, left or

right
Variable: A variable of type int

Visible The visibility of the panel Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the panel.
Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the foreground
of the element and for its children
(unless children set their own
value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,

© Francisco Esquembre, August 2002 56

Easy Java Simulations 3.1. Appendices

yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 57

Easy Java Simulations 3.1. Appendices

DrawingPanel

Icon :

Caption: A 2D container for drawables

Description: A DrawingPanel is a special container element that
accommodates children of the Drawables set (see chapter 6).

Drawing panels draw in the rectangular region of the (2D) plane which goes
from the point given by the coordinates (Minimum X, Minimum Y) to the point
(Maximum X, Maximum Y)1, although they can also be instructed to
automatically compute the scales on each, or both, of the X and Y axes so that
they will show all their children elements.

Drawing panels are interactive and respond to different gestures of the mouse
over it. The sequence is as follows:

When the user clicks on the panel, the action indicated by the On Press
property is called. Immediately after, the properties X and Y are set to the
mouse position (in the panel’s own real coordinates), which also triggers the
action liked to the On Drag property.

When the user is dragged (with the mouse button hold down) the properties X
and Y are updated to the mouse position and the action linked to On Drag is
triggered.

When the user releases the mouse button (if he or she does it inside the
element) the action linked to the property On Release is triggered.

1 Minimum X, Minimum Y, etc. are properties of this element.

© Francisco Esquembre, August 2002 58

Easy Java Simulations 3.1. Appendices

Although a drawing panel belongs to the group of containers, it should not be
used to host children other than from the group of drawables.

Table of Properties
Name Description Possible values

Autoscale X Whether to automatically
compute the scale for the X
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Y Whether to automatically
compute the scale for the Y
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Minimum X The minimum X coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum X The maximum X coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Minimum Y The minimum Y coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Y The maximum Y coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

X The X coordinate of the mouse Constant: not applicable
Variable: A variable of type int or
double

Y The Y coordinate of the mouse Constant: not applicable
Variable: A variable of type int or
double

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

Coordinates Whether it should display the
coordinates when the mouse is
clicked on the element

Constant: Either true or false.
Variable: A variable of type boolean

Square Whether to keep a squared
aspect ratio. This can modify
the extrema for the axes

Constant: Either true or false.
Variable: A variable of type boolean

Gutters The gutters (unused space)
around the drawing area

Constant: The top, left, bottom and
right space, in pixels, separated by
commas
Variable: An Object variable of the
class java.awt.Rectangle

Size The preferred size for the panel. Constant: The width and height

© Francisco Esquembre, August 2002 59

Easy Java Simulations 3.1. Appendices

Parents can modify this,
according to their layout

integer dimensions in screen
coordinates, separated by a commas
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the
foreground of the element and
for its children (unless children
set their own value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 60

Easy Java Simulations 3.1. Appendices

PlottingPanel

Icon :

Caption: A 2D container to plot series of (x,y) points

Description: A PlottingPanel is a special DrawingPanel that includes, by
default, the display of two axes, in the X and Y direction, as well as titles for
both axes and for the panel itself.

Since plotting panels’ main purpose is the display of drawables of the Dataset
class, which are not responsive to user interaction, plotting panels have
suppressed the interaction properties of drawing panels (X, Y, and the actions
On Press, On Drag, On Release).

Table of Properties
Name Description Possible values

Title A text to be displayed at the top
of the panel

Constant: Any string (of reasonable
length)
Variable: A variable of type String

X Axis The position in which to place
the X axis

Constant: Any constant number. By
default, the axis is drawn at the bottom
margin (see Gutters) of the plot.
Variable: A variable of type int or
double

Title X A text to be displayed on the X
axis

Constant: Any string (of reasonable
length)
Variable: A variable of type String

Y axis The position in which to place
the Y axis

Constant: Any constant number. By
default, the axis is drawn at the left
margin (See Gutters) of the plot.
Variable: A variable of type int or
double

Title Y A text to be displayed on the Y Constant: Any string (of reasonable

© Francisco Esquembre, August 2002 61

Easy Java Simulations 3.1. Appendices

axis length)
Variable: A variable of type String

Autoscale X Whether to automatically
compute the scale for the X
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Y Whether to automatically
compute the scale for the Y
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Minimum X The minimum X coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum X The maximum X coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Minimum Y The minimum Y coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Y The maximum Y coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Coordinates Whether it should display the
coordinates when the mouse is
clicked on the element

Constant: Either true or false.
Variable: A variable of type boolean

Square Whether to keep a squared
aspect ratio. This can modify
the extrema for the axes

Constant: Either true or false.
Variable: A variable of type boolean

Gutters The gutters (unused space)
around the drawing area

Constant: The top, left, bottom and
right space, in pixels, separated by
commas
Variable: An Object variable of the
class java.awt.Rectangle

Size The preferred size for the panel.
Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the
foreground of the element and
for its children (unless children
set their own value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the See Foreground above

© Francisco Esquembre, August 2002 62

Easy Java Simulations 3.1. Appendices

background of the element and
for its children (unless children
set their own value)

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 63

Easy Java Simulations 3.1. Appendices

DrawingPanel3D

Icon :

Caption: A 3D container for drawables

Description: A DrawingPanel3D is a special, 3D enabled, container element
that accommodates children of the Drawables set (see chapter 6).

Drawing 3D panels draw in the three dimensional region of the space which
goes from the point given by the coordinates (Minimum X, Minimum Y,
Minimum Z) to the point (Maximum X, Maximum Y, Maximum Z)2, although
they can also be instructed to automatically compute the scales on each, or all,
of the axes so that they will show all their children elements.

Drawing 3D panels are endowed with a ‘not too sophisticated’ capability of
removing hidden lines, which can improve the visibility of the objects inside
them.

Drawing 3D panels are not interactive in the same way Drawing 2D panels are.
However they respond to mouse interaction:

• Clicking and dragging on the panel changes the perpective point of
view.

• If the ‘Control’ key is pressed while the mouse is operated, then the
scene is panned.

• If the ‘Shift’ key is pressed, then the scene is zoomed in or out,
depending on the mouse motion.

Although a drawing 3D panel belongs to the group of containers, it should not
be used to host children other than from the group of drawables.

2 Minimum X, Minimum Y, etc. are properties of this element.

© Francisco Esquembre, August 2002 64

Easy Java Simulations 3.1. Appendices

Table of Properties
Name Description Possible values

Autoscale X Whether to automatically
compute the scale for the X
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Y Whether to automatically
compute the scale for the Y
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Z Whether to automatically
compute the scale for the Z
coordinates

Constant: Either true or false.
Variable: A variable of type boolean

Minimum X The minimum X coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum X The maximum X coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Minimum Y The minimum Y coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Y The maximum Y coordinate
that can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Minimum Z The minimum Z coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Z The maximum Z coordinate that
can be drawn in the panel

Constant: Any constant number
Variable: A variable of type int or
double

Alpha The horizontal angle (in
degrees) to rotate the view
before projecting to the screen

Constant: Any constant number
Variable: A variable of type int or
double

Beta The vertical angle (in degrees)
to rotate the view before
projecting to the screen

Constant: Any constant number
Variable: A variable of type int or
double

Zoom The magnifying factor. A factor
of 1.0 leaves the scene
unmodified

Constant: Any constant number
Variable: A variable of type int or
double

Perspective Whether it should apply a conic
perspective (objects farther
away look smaller and dimmer)

Constant: Either true or false.
Variable: A variable of type boolean

Show Box Whether it should display a
bounding box

Constant: Either true or false.
Variable: A variable of type boolean

Show Axes Whether it should display the
axes

Constant: Either true or false.
Variable: A variable of type boolean

Hide Lines Whether it should remove
hidden lines

Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the panel.
Parents can modify this,

Constant: The width and height
integer dimensions in screen

© Francisco Esquembre, August 2002 65

Easy Java Simulations 3.1. Appendices

according to their layout coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used for the
foreground of the element and
for its children (unless children
set their own value)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element and
for its children (unless children
set their own value)

See Foreground above

Font The font to be used by any text
displayed by the element and by
its children (unless children set
their own value)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 66

Easy Java Simulations 3.1. Appendices

Basic elements

© Francisco Esquembre, August 2002 67

Easy Java Simulations 3.1. Appendices

Button

Icon :

Caption: A button for actions

Description: A Button is a basic element that is used to trigger an action. It
displays a text or an image, or both, and triggers the associated action when the
button is clicked (that is, pressed and released).

Buttons can be disabled (that is, the user can click on them but they will not
respond) by setting its Enabled property to false. In this case, the button
interface is grayed out.

Table of Properties
Name Description Possible values

Text The text displayed by the button Constant: Any string (of reasonable
length)
Variable: A variable of type String

Image A gif file that holds the image for
the button. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Alignment The horizontal alignment of the
icon and text

Constant: either left, center, right (the
default), leading or trailing.
Variable: A variable of type int

Action

The action to trigger when the
button is clicked

Constant: not applicable
Variable: An action

Enabled Whether the button can be clicked
or not

Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from

© Francisco Esquembre, August 2002 68

Easy Java Simulations 3.1. Appendices

0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 69

Easy Java Simulations 3.1. Appendices

Checkbox

Icon :

Caption: A check box for boolean values

Description: A Checkbox is a basic element that is used to display and modify
a boolean value.

Check boxes can trigger an action whenever they are clicked upon them, either
to select or to unselect them. Besides this, a second action can be triggered in
any of the two cases, separately; that is only when the element is selected or
unselected. This second action (the one associated to the property Action On or
Action Off, respectively) is triggered always after the first one (the one
associated to the Action property).

Table of Properties
Name Description Possible values

Text The text displayed by the
checkbox

Constant: Any string (of reasonable
length)
Variable: A variable of type String

Image A gif file that holds the image for
the checkbox. Animated gif are
also possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Selected
Image

A gif file that will be displayed
when the element is in selected
state. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Alignment The horizontal alignment of the
icon and text

Constant: either left, center, right (the
default), leading or trailing.
Variable: A variable of type int

Variable The value to be displayed and
modified

Constant: Either true or false.
Variable: A variable of type boolean

Selected The initial value for the variable Constant: Either true or false.
Variable: Not applicable

Action

The action to trigger when the
element is clicked

Constant: not applicable
Variable: An action

Action On The action to trigger when the
element is selected

Constant: not applicable
Variable: An action

Action Off The action to trigger when the
element is unselected

Constant: not applicable
Variable: An action

Enabled Whether the button can be clicked
or not

Constant: Either true or false.
Variable: A variable of type boolean

© Francisco Esquembre, August 2002 70

Easy Java Simulations 3.1. Appendices

Size The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 71

Easy Java Simulations 3.1. Appendices

RadioButton

Icon :

Caption: A radio button for boolean values

Description: A RadioButton is a basic element that is used to display and
modify a boolean value. In this sense it works similarly to a Checkbox. The
difference with these is that radio buttons work in groups. That is, when more
than one radio buttons coexist in the same container, only one of them can be
selected at a given moment (it is also possible that none of them is selected).
Hence, if one is clicked upon, in order to select it, it automatically unselects the
others.

Three radio buttons in a panel

Radio buttons trigger an action whenever they are clicked upon them, either to
select or to unselect them. Besides this, a second action can be triggered in any
of the two cases, separately; that is only when the element is selected or
unselected. This second action (the one associated to the property Action On or
Action Off, respectively) is triggered always after the first one (the one
associated to the Action property).

If the button is unselected because any other radio button of its group is
selected, the corresponding actions will not be triggered.

Table of Properties

Name Description Possible values
Text The text displayed by the button Constant: Any string (of reasonable

length)
Variable: A variable of type String

Image A gif file that holds the image for
the button. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Selected
Image

A gif file that will be displayed
when the element is in selected
state. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Alignment The horizontal alignment of the
icon and text

Constant: either left, center, right (the
default), leading or trailing.

© Francisco Esquembre, August 2002 72

Easy Java Simulations 3.1. Appendices

Variable: A variable of type int
Variable The value to be displayed and

modified
Constant: Either true or false.
Variable: A variable of type boolean

Selected The initial value for the variable Constant: Either true or false.
Variable: Not applicable

Action

The action to trigger when the
button is clicked

Constant: not applicable
Variable: An action

Action On The action to trigger when the
element is selected

Constant: not applicable
Variable: An action

Action Off The action to trigger when the
element is unselected

Constant: not applicable
Variable: An action

Enabled Whether the button can be clicked
or not

Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 73

Easy Java Simulations 3.1. Appendices

Slider

Icon :

Caption: A slider to display and modify a value

Description: A Slider is an element that displays the value of a numerical
variable. The value is displayed positioning the knob of a slider between a
minimum and a maximum value. Also, if the format property is set to a non-
empty string, the value is displayed in a textual form at the top of the slider.
The value can be edited by dragging a knob to a new position.

The element triggers the method indicated by the corresponding action
property when the knob is pressed, dragged or released.

Tip: when using the a slider to display and edit an integer variable, it is
convenient to set both format and ticksFormat to 0;-0 and closest to true.

Table of Properties
Name Description Possible values

Variable The value to be displayed and
modified

Constant: Any constant number
Variable: A variable of type int or
double

Value The initial value for the variable Constant: Any constant number
Variable: Not applicable

Minimum The minimum value displayed.
If the variable is set to a smaller
value, the slider displays this
minimum

Constant: Any constant number.
Default is 0.0
Variable: A variable of type int or
double

Maximum The maximum value displayed.
If the variable is set to a bigger
value, the slider displays this
maximum

Constant: Any constant number.
Default is 1.0
Variable: A variable of type int or
double

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

Format The format used to display the Constant: Any string valid for the

© Francisco Esquembre, August 2002 74

Easy Java Simulations 3.1. Appendices

 value. If not set, the value won't

be displayed
constructor of the class
java.text.DecimalFormat (see
appendix B)
Variable: An Object variable of the
class java.text.DecimalFormat

Enabled Whether the knob can be
dragged

Constant: Either true or false.
Variable: A variable of type boolean

Ticks The number of ticks to use
between the minimum and the
maximum. Only those at odd
positions are labeled

Constant: Any (reasonable) integer
number
Variable: A variable of type int

Ticks Format The format used to display the
ticks. If not set, the ticks won't
be displayed

Constant: Any string valid for the
constructor of the class
java.text.DecimalFormat (see
appendix B)
Variable: An Object variable of the
class java.text.DecimalFormat

Closest Whether the knob should
resolve to the closest tick when
released

Constant: Either true or false.
Variable: A variable of type boolean

Orientation Whether to display the slider
horizontally or vertically

Constant: Either horizontal or
vertical
Variable: A variable of type int

Size

The preferred size for the
element. Parents can modify
this, according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the
text

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system

© Francisco Esquembre, August 2002 75

Easy Java Simulations 3.1. Appendices

Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 76

Easy Java Simulations 3.1. Appendices

Field (or NumberField)

Icon :

Caption: A text field to display and modify a number

Description: A Field or NumberField is an element that displays the value of a
numerical variable. The value is displayed using a text field that can be edited
to change the value of the variable.

When you start editing the field, it changes its background color to yellow.
This helps you identify visually that it is displaying a new value but that this
value has not yet been effectively entered. Only when you hit the return key is
the value parsed in and the background changes back to the original one.

The element triggers the method indicated by the Action property when the
return key is hit, thus assuming you have finished editing of the value.

Table of Properties
Name Description Possible values

Variable The value to be displayed and
modified

Constant: Any constant number
Variable: A variable of type int or
double

Value The initial value for the variable Constant: Any constant number
Variable: Not applicable

Editable Whether the value can be
modified

Constant: Either true or false.
Variable: A variable of type boolean

Format

The format used to display the
value

Constant: Any string valid for the
constructor of the class
java.text.DecimalFormat (see
appendix B). Default is 0.000;-0.000
Variable: An Object variable of the
class java.text.DecimalFormat

Action The action to trigger when the
return key is hit

Constant: not applicable
Variable: An action

Size

The preferred size for the
element. Parents can modify
this, according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the
text

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.

© Francisco Esquembre, August 2002 77

Easy Java Simulations 3.1. Appendices

Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 78

Easy Java Simulations 3.1. Appendices

TextField

Icon :

Caption: A field to display and modify a string

Description: A TextField is an element that displays a String variable. The
value is displayed using a text field that can be edited to change the value of
the variable.

The element triggers the method indicated by the Action property when the
return key is hit, thus assuming you have finished editing of the value.

When you start editing the field, it changes its background color to yellow.
This helps you identify visually that it is displaying a new value but that this
value has not yet been effectively entered. Only when you hit the return key is
the value parsed in and the background changes back to the original one.

Table of Properties

Name Description Possible values
Variable The value to be displayed and

modified
Constant: Any constant String
Variable: A variable of type String

Value The initial value for the variable Constant: Any constant String
Variable: Not applicable

Editable Whether the value can be
modified

Constant: Either true or false.
Variable: A variable of type boolean

Action The action to trigger when the
return key is hit

Constant: not applicable
Variable: An action

Size

The preferred size for the
element. Parents can modify
this, according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the
text

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system

© Francisco Esquembre, August 2002 79

Easy Java Simulations 3.1. Appendices

Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 80

Easy Java Simulations 3.1. Appendices

Label

Icon :

Caption: A decorative label

Description: A Label is a basic element that is used to display a decorative
text or image, or both.

Labels can not be linked to variables nor can trigger any action.
Table of Properties

Name Description Possible values
Text The text displayed by the label Constant: Any string (of reasonable

length)
Variable: A variable of type String

Image A gif file that holds the image for
the label. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Alignment

Sets the alignment of the label's
contents along the X axis.

Constant: either left, center, right,
leading or trailing.
Variable: A variable of type int

Size The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and

© Francisco Esquembre, August 2002 81

Easy Java Simulations 3.1. Appendices

size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 82

Easy Java Simulations 3.1. Appendices

TextArea

Icon :

Caption: A text area where to print

Description: A TextArea is an element that can be used to print textual
messages according to the simulation’s logic. If you want to print a message in
any part of your simulation model, you need to include a text area element in
your view and then you can use the sentence

_print ("Anything you want to print");

or
_println ("Anything you want to print");

The message will appear in the text area. In the second case, a new line
character is added to the message, hence subsequent messages will appear in a
new line.

The predefined action _clearView() will, among other things, clear any
textarea in your view.

Only one such text area can be present in a given simulation view.

Text areas trigger no actions.
Table of Properties

Name Description Possible values
Title The title text that will appear at

the top of the text area
Constant: Any string (of reasonable
length)
Variable: A variable of type String

Size The preferred size for the
element. Parents can modify
this, according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the
text

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,

© Francisco Esquembre, August 2002 83

Easy Java Simulations 3.1. Appendices

yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 84

Easy Java Simulations 3.1. Appendices

Bar

Icon :

Caption: A bar that displays a value

Description: A Bar is a basic element that is used to display a numeric value.
The value is displayed using a progress bar between a minimum and a
maximum value. Also, if the format property is set to a non-empty string, the
value is displayed in a textual form in the center of the bar. The value can not
be edited.

Bars trigger no action.
Table of Properties

Name Description Possible values
Variable The value to be displayed Constant: Any constant number

Variable: A variable of type int or
double

Minimum The minimum value displayed. If
the variable is set to a smaller
value, the bar displays this
minimum

Constant: Any constant number.
Default is 0.0
Variable: A variable of type int or
double

Maximum The maximum value displayed. If
the variable is set to a bigger
value, the bar displays this
maximum

Constant: Any constant number.
Default is 1.0
Variable: A variable of type int or
double

Format

The format used to display the
value. If not set, the value won't
be displayed

Constant: Any string valid for the
constructor of the class
java.text.DecimalFormat (see
appendix B)
Variable: An Object variable of the
class java.text.DecimalFormat

Orientation Whether to display the bar
horizontally or vertically

Constant: Either horizontal or
vertical
Variable: A variable of type int

Size

The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,

© Francisco Esquembre, August 2002 85

Easy Java Simulations 3.1. Appendices

magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 86

Easy Java Simulations 3.1. Appendices

Sound

Icon :

Caption: A sound-enabled checkbox

Description: Sound is a particular type of Checkbox which allows to play a
sound according to the value of the internal boolean value. The sound is
playerd continuously (in a loop) until the boolean value turns to be false.

For this reason, in order to let the user manually stop the sound (which could
otherwise play to turn us all crazy!) this sound capability has been given to a
check box.

Sound elements can trigger an action whenever they are clicked upon them,
either to select or to unselect them. Besides this, a second action can be
triggered in any of the two cases, separately; that is only when the element is
selected or unselected. This second action (the one associated to the property
Action On or Action Off, respectively) is triggered always after the first one
(the one associated to the Action property).

Table of Properties
Name Description Possible values

Audio File The audio file to play Constant: The name of an existing
AU, AIFF or WAV file. The file
location must be specified either as an
absolute path or relative to Ejs’
working directory
Variable: A variable of type String

Text The text displayed by the element Constant: Any string (of reasonable
length)
Variable: A variable of type String

Image A gif file that holds the image for
the element. Animated gif are
also possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Selected
Image

A gif file that will be displayed
when the element is in selected
state. Animated gif are also
possible

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

Alignment The horizontal alignment of the
icon and text

Constant: either left, center, right (the
default), leading or trailing.
Variable: A variable of type int

© Francisco Esquembre, August 2002 87

Easy Java Simulations 3.1. Appendices

Variable The value to be displayed and
modified

Constant: Either true or false.
Variable: A variable of type boolean

Selected The initial value for the variable Constant: Either true or false.
Variable: Not applicable

Action

The action to trigger when the
element is clicked

Constant: not applicable
Variable: An action

Action On The action to trigger when the
element is selected

Constant: not applicable
Variable: An action

Action Off The action to trigger when the
element is unselected

Constant: not applicable
Variable: An action

Enabled Whether the button can be clicked
or not

Constant: Either true or false.
Variable: A variable of type boolean

Size The preferred size for the
element. Parents can modify this,
according to their layout

Constant: The width and height
integer dimensions in screen
coordinates, separated by a comma
Variable: An Object variable of the
class java.awt.Dimension

Foreground The color used to display the text Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Background The color used for the
background of the element

See Foreground above

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Tooltip The text displayed when the
cursor lingers over the element

Constant: Any string (of reasonable
length)
Variable: A variable of type String

© Francisco Esquembre, August 2002 88

Easy Java Simulations 3.1. Appendices

Drawables

© Francisco Esquembre, August 2002 89

Easy Java Simulations 3.1. Appendices

Particle

Icon :

Caption: An interactive particle

Description: A Particle is a drawable element that draws a simple geometric
shape at a given location of its parent.

A filled-circle particle

The shape is drawn at the given location, with the specified size. However, a
scale factor is also applied before drawing the element. This helps visualize
elements which are of small size, relative to its parent’s coordinate system. The
location indicates the hot spot (or sensitive point) of the shape. However, the
shape can be drawn in several different positions relative to this hot spot (see
property Position in the table).

The element is interactive (if the parent is interactive) and triggers the method
indicated by the corresponding action property when it is pressed, dragged or
released.

Table of Properties
Name Description Possible values

X The X coordinate of the location
of the particle

Constant: Any constant number
Variable: A variable of type int or
double

Y The Y coordinate of the location
of the particle

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate of the location
of the particle

Constant: Any constant number
Variable: A variable of type int or
double

Size X The X component of the size of
the particle

Constant: Any constant number
Variable: A variable of type int or
double

Size Y The Y component of the size of
the particle

Constant: Any constant number
Variable: A variable of type int or
double

Size Z The Z component of the size of
the particle

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is visible Constant: Either true or false.
Variable: A variable of type boolean

Enabled Whether the element is Constant: Either true or false.

© Francisco Esquembre, August 2002 90

Easy Java Simulations 3.1. Appendices

responsive to user interaction Variable: A variable of type boolean
Scale X A scale factor in the X axis to

apply before drawing the element
Constant: Any constant number
Variable: A variable of type int or
double

Scale Y A scale factor in the Y axis to
apply before drawing the element

Constant: Any constant number
Variable: A variable of type int or
double

Scale Z A scale factor in the Z axis to
apply before drawing the element

Constant: Any constant number
Variable: A variable of type int or
double

Style The type of shape to draw Constant: Either a simple dot or a
filled or hollow circle or square. The
valid values are NO_MARKER,
CIRCLE, FILLED_CIRCLE,
SQUARE, FILLED_SQUARE
Variable: A variable of type int

Position The position of the shape relative
to the hot spot

Constant: One of CENTERED,
HOR_CENTERED,
VER_CENTERED, LOWER_LEFT,
UPPER_LEFT
Variable: A variable of type int

Color The color used to draw the
element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from
0 to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 91

Easy Java Simulations 3.1. Appendices

Arrow

Icon :

Caption: An interactive vector (or line)

Description: An Arrow is a drawable element that draws a simple vector or
line at a given location of its parent.

A vector arrow

The vector is drawn at the given location, with the specified size. However, a
scale factor is also applied before drawing the element. This helps visualize
elements which are of small size, relative to its parent’s coordinate system. The
location indicates the origin of the vector. Its hot spot (or sensitive point) is
placed at the end point of the vector. Thus, dragging the mouse on the head,
modifies the size of the vector.

The element is interactive (if the parent is interactive) and triggers the method
indicated by the corresponding action property when it is pressed, dragged or
released.

Table of Properties
Name Description Possible values

X The X coordinate of the origin
of the vector

Constant: Any constant number
Variable: A variable of type int or
double

Y The Y coordinate of the origin
of the vector

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate of the origin
of the vector

Constant: Any constant number
Variable: A variable of type int or
double

Size X The X component of the size of
the vector

Constant: Any constant number
Variable: A variable of type int or
double

Size Y The Y component of the size of
the vector

Constant: Any constant number
Variable: A variable of type int or
double

Size Z The Z component of the size of
the vector

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is visible Constant: Either true or false.
Variable: A variable of type boolean

Enabled Whether the element is Constant: Either true or false.

© Francisco Esquembre, August 2002 92

Easy Java Simulations 3.1. Appendices

responsive to user interaction Variable: A variable of type boolean
Scale X A scale factor in the X axis to

apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Scale Y A scale factor in the Y axis to
apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Scale Z A scale factor in the Z axis to
apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Style The type of vector to draw Constant: Either an arrow, a segment
of a segment with a square handle at the
end point can be drawn. The valid
values are ARROW, SEGMENT and
BOX
Variable: A variable of type int

Color The color used to draw the
element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 93

Easy Java Simulations 3.1. Appendices

Image

Icon :

Caption: An interactive gif image

Description: An Image is a drawable element that draws a gif image at a given
location of its parent.

The image is drawn at the given location, with the specified size. However, a
scale factor is also applied before drawing the element. This helps visualize
elements which are of small size, relative to its parent’s coordinate system. The
location indicates the hot spot (or sensitive point) of the image. However, the
image can be drawn in several different positions relative to this hot spot (see
property Position in the table).

The element is interactive (if the parent is interactive) and triggers the method
indicated by the corresponding action property when it is pressed, dragged or
released.

Table of Properties
Name Description Possible values

Image The gif file with the image to be
drawn

Constant: The name of an existing gif
file. The file or URL location must be
specified either as an absolute path or
relative to Ejs’ working directory
Variable: A variable of type String

X The X coordinate of the
location of the image

Constant: Any constant number
Variable: A variable of type int or
double

Y The Y coordinate of the
location of the image

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate of the location
of the image

Constant: Any constant number
Variable: A variable of type int or
double

Size X The X component of the size of
the image

Constant: Any constant number
Variable: A variable of type int or
double

Size Y The Y component of the size of
the image

Constant: Any constant number
Variable: A variable of type int or
double

Size Z The Z component of the size of Constant: Any constant number

© Francisco Esquembre, August 2002 94

Easy Java Simulations 3.1. Appendices

the image Variable: A variable of type int or
double

Visible Whether the element is visible Constant: Either true or false.
Variable: A variable of type boolean

Enabled Whether the element is
responsive to user interaction

Constant: Either true or false.
Variable: A variable of type boolean

Scale X A scale factor in the X axis to
apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Scale Y A scale factor in the Y axis to
apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Scale Z A scale factor in the Z axis to
apply before drawing the
element

Constant: Any constant number
Variable: A variable of type int or
double

Position The position of the shape
relative to the hot spot

Constant: One of CENTERED,
HOR_CENTERED, VER_CENTERED,
LOWER_LEFT, UPPER_LEFT
Variable: A variable of type int

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 95

Easy Java Simulations 3.1. Appendices

Text

Icon :

Caption: An interactive text

Description: A Text is a drawable element that draws a string at a given
location of its parent.

The string is drawn at the given location, using the specified font (which
determines its size).

The location indicates the hot spot (or sensitive point) of the text. However, the
text can be drawn in several different positions relative to this hot spot (see
property Position in the table).

The element is interactive (if the parent is interactive) and triggers the method
indicated by the corresponding action property when it is pressed, dragged or
released.

Table of Properties
Name Description Possible values

Text The string to be drawn Constant: Any string (of reasonable
length)
Variable: A variable of type String

X The X coordinate of the
location of the text

Constant: Any constant number
Variable: A variable of type int or
double

Y The Y coordinate of the
location of the text

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate of the location
of the text

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is visible Constant: Either true or false.
Variable: A variable of type boolean

Enabled Whether the element is
responsive to user interaction

Constant: Either true or false.
Variable: A variable of type boolean

Font The font used to display the text Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the

© Francisco Esquembre, August 2002 96

Easy Java Simulations 3.1. Appendices

class java.awt.Font
Position The position of the text relative

to the hot spot
Constant: One of CENTERED,
HOR_CENTERED, VER_CENTERED,
LOWER_LEFT, UPPER_LEFT
Variable: A variable of type int

Color The color used to display the
text

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

On Press The action to trigger when the
mouse button is pressed on the
element

Constant: not applicable
Variable: An action

On Drag The action to trigger when the
mouse button is dragged on the
element

Constant: not applicable
Variable: An action

On Release The action to trigger when the
mouse button is released on the
element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 97

Easy Java Simulations 3.1. Appendices

Trace

Icon :

Caption: A sequence of points

Description: A Trace is a drawable element that visualizes a sequence of
points in its parent.

Two datasets with no markers and connected

The points are drawn at the time they are added, one at a time, as marks at the
given location, using the specified marker properties. They can also be
connected by a segment, according to the Connected property.

The data set can be instructed to draw a maximum number of points. If so, a
new point will cause the first one in the set to be discarded, thus acting as a
strip chart recorder. If the No Repeat property is set to true and the point to be
added equals the last one, the new point is ignored. This is useful when the
parent is in autoscale state and we don’t want static data to modify the scales of
the parent.

Finally the trace can also be instructed to ignore a sequence of points before
actually drawing a new one. This is useful if the number of points produced
and sent to the data set is too large and we want to display a subset of them.

The element is not interactive and triggers no action.
Table of Properties

Name Description Possible values
Points The maximum number of

points to draw
Constant: Any constant integer
number. 0 means the sequence is
infinite
Variable: A variable of type int

Skip The number of points to
ignore before actually
plotting one

Constant: Any constant integer
number. 0 means that all points are
drawn
Variable: A variable of type int.

X The X coordinate for the
next point

Constant: Any constant number
Variable: A variable of type int or
double

© Francisco Esquembre, August 2002 98

Easy Java Simulations 3.1. Appendices

Y The Y coordinate for the
next point

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate for the next
point

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

No Repeat Whether to ignore a point
which is equal to the last one

Constant: Either true or false.
Variable: A variable of type boolean

Connected Whether to connect the
markers. This affects only
the next point to be added.
Thus, changing this property
dynamically can produce
discontinuous curves

Constant: Either true or false.
Variable: A variable of type boolean

Color The color for the connecting
lines

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Marker Shape The shape for the markers Constant: Either NO_MARKER,
CIRCLE, FILLED_CIRCLE, SQUARE
or FILLED_SQUARE
Variable: A variable of type int

Marker Size The size for the markers (in
pixels)

Constant: Any constant integer number
Variable: A variable of type int

Marker Color The color for the markers See Color above

© Francisco Esquembre, August 2002 99

Easy Java Simulations 3.1. Appendices

Poligon

Icon :

Caption: A filled poligon

Description: This drawable corresponds to a closed poligon specified by a set
of vertex points (x,y,z). The poligon may be drawn filled of hollow. The color
for the border and the inside of the poligon may be specified.

The poligon is not interactive, hence it cannot modify the data for the vertex,
nor trigger any action.

Table of Properties
Name Description Possible values

X The X coordinates of the
vertex points

Constant: A double constant, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates of the
vertex points

Constant: A double constant, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Z The Z coordinates of the
vertex points

Constant: A double constant, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Connected Whether each point is
connected to the next one

Constant: Not applicable. By default
all points are connected to the next one
Variable: A variable array of type
boolean. Each element of the array
(except the last) indicates if the point
must be connected to the next one (see
also Closed)

Visible Whether the element is Constant: Either true or false.

© Francisco Esquembre, August 2002 100

Easy Java Simulations 3.1. Appendices

visible Variable: A variable of type boolean
Points The number of vertex Constant: Any constant integer number

Variable: A variable of type int
Closed Whether the last point is

connected to the first one
Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
border of the poligon

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Fill Color The color used to fill the
inside of the poligon. If
unspecified, the poligon is
not filled

See Line Color above

© Francisco Esquembre, August 2002 101

Easy Java Simulations 3.1. Appendices

LightBulb

Icon :

Caption: A variable color light

Description: This drawable corresponds to a light bulb which displays a light
of a given color. The intensity of the light is associated to an integer value
ranging from 0 (transparent) to 255 (opaque). Hence, modifying the value of
the internal variable turns the light gradually on or off.

The light is not interactive, hence it cannot modify the intensity variable, nor
trigger any action.

Table of Properties
Name Description Possible values

X The X coordinate of the
center of the base of the
light

Constant: Any constant number
Variable: A variable of type int or
double

Y The Y coordinate of the
center of the base of the
light

Constant: Any constant number
Variable: A variable of type int or
double

Z The Z coordinate of the
center of the base of the
light

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Radius The radius of the bulb Constant: Any constant number
Variable: A variable of type int or
double

Intensity The intensity (degree of
transparency) of the light. 0
is transparent, 255 is
opaque

Constant: Any constant integer number
Variable: A variable of type int

Color The color used to draw the
light

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.

© Francisco Esquembre, August 2002 102

Easy Java Simulations 3.1. Appendices

Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Line Color The color used to draw the
lamp

See Color above

© Francisco Esquembre, August 2002 103

Easy Java Simulations 3.1. Appendices

 ParticleSet

Icon :

Caption: A set of particles

Description: A ParticleSet is a set of several Particle elements.

If you understand how a Particle works, then you know how a ParticleSet
works. The only difference is that, for some properties, you will need to
specify a whole array of values instead of a simple one. If, still, you specify a
constant value, this value will apply for all the individual particles.

Table of Properties
Name Description Possible values

X The X coordinates of the
locations of the particles

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates of the
locations of the particles

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Z The Z coordinates of the
locations of the particles

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Size X The X components of the
sizes of the particles

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

© Francisco Esquembre, August 2002 104

Easy Java Simulations 3.1. Appendices

Size Y The Y components of the
sizes of the particles

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Size Z The Z components of the
sizes of the particles

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Visible Whether each individual
element is visible

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Enabled Whether each individual
element is responsive to
user interaction

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Elements The number of individual
elements in the set

Constant: Any constant integer number
Variable: A variable of type int

Scale X A scale factor in the X axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Y A scale factor in the Y axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Z A scale factor in the Z axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Style The type of shapes to draw
(the same for all elements)

Constant: Either a simple dot or a filled
or hollow circle or square. The valid
values are NO_MARKER, CIRCLE,
FILLED_CIRCLE, SQUARE,
FILLED_SQUARE
Variable: A variable of type int

Position The position of the shapes
relative to the hot spot (the
same for all elements)

Constant: One of CENTERED,
HOR_CENTERED, VER_CENTERED,
LOWER_LEFT, UPPER_LEFT
Variable: A variable of type int

Color The color used to draw
each individual element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,

© Francisco Esquembre, August 2002 105

Easy Java Simulations 3.1. Appendices

magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color applies to all
elements. An array of Object variables
of the class java.awt.Color specifies a
color for each indfivual element

On Press

The action to trigger when
the mouse button is pressed
on the element

Constant: not applicable
Variable: An action

On Drag The action to trigger when
the mouse button is
dragged on the element

Constant: not applicable
Variable: An action

On Release The action to trigger when
the mouse button is
released on the element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 106

Easy Java Simulations 3.1. Appendices

ArrowSet
Description: A

Icon :

Caption: A set of vectors

Description: An ArrowSet is a set of several Arrow drawable elements.

If you understand how an Arrow works, then you know how an ArrowSet
works. The only difference is that, for some properties, you will need to
specify a whole array of values instead of a simple one. If, still, you specify a
constant value, this value will apply for all the individual arrows.

Table of Properties
Name Description Possible values

X The X coordinates of the
origins of the vectors

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates of the
origins of the vectors

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Z The Z coordinates of the
origins of the vectors

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Size X The X components of the
sizes of the vectors

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Size Y The Y components of the Constant: A constant number, meaning

© Francisco Esquembre, August 2002 107

Easy Java Simulations 3.1. Appendices

sizes of the vectors the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Size Z The Z components of the
sizes of the vectors

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Visible Whether each individual
element is visible

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Enabled Whether each individual
element is responsive to
user interaction

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Elements The number of individual
elements in the set

Constant: Any constant integer number
Variable: A variable of type int

Scale X A scale factor in the X axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Y A scale factor in the Y axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Z A scale factor in the Z axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Style The type of vectors to draw
(the same for all elements)

Constant: Either an arrow, a segment
of a segment with a square handle at the
end point can be drawn. The valid
values are ARROW, SEGMENT and
BOX
Variable: A variable of type int

Color The color used to draw
each individual element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for

© Francisco Esquembre, August 2002 108

Easy Java Simulations 3.1. Appendices

instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color applies to all
elements. An array of Object variables
of the class java.awt.Color specifies a
color for each indfivual element

On Press The action to trigger when
the mouse button is pressed
on the element

Constant: not applicable
Variable: An action

On Drag The action to trigger when
the mouse button is
dragged on the element

Constant: not applicable
Variable: An action

On Release The action to trigger when
the mouse button is
released on the element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 109

Easy Java Simulations 3.1. Appendices

ImageSet

Icon :

Caption: A set of images

Description: An ImageSet is a set of several Image drawable elements.

If you understand how a Image works, then you know how a ImageSet works.
The only difference is that, for some properties, you will need to specify a
whole array of values instead of a simple one. If, still, you specify a constant
value, this value will apply for all the individual images.

Table of Properties
Name Description Possible values

Image The gif file or array of files
with the image or images to
be drawn

Constant: A constant string (delimited
by quotes or inverted commas),
meaning the same image for all. The
string must hold the name of an existing
gif file. The file or URL location must
be specified either as an absolute path
or relative to Ejs’ working directory
Variable: A variable array of type
String. Alternatively, a single String
sets the same image for all the elements

X The X coordinates of the
locations of the images

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates of the
locations of the images

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

© Francisco Esquembre, August 2002 110

Easy Java Simulations 3.1. Appendices

Z The Z coordinates of the
locations of the images

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Size X The X components of the
sizes of the images

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Size Y The Y components of the
sizes of the images

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Size Z The Z components of the
sizes of the images

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Visible Whether each individual
element is visible

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Enabled Whether each individual
element is responsive to
user interaction

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Elements The number of individual
elements in the set

Constant: Any constant integer number
Variable: A variable of type int

Scale X A scale factor in the X axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Y A scale factor in the Y axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Scale Z A scale factor in the Z axis
to apply before drawing the
individual elements

Constant: A constant number, meaning
the same value for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same value for all points

Position The position of the shapes
relative to the hot spot (the
same for all elements)

Constant: One of CENTERED,
HOR_CENTERED, VER_CENTERED,
LOWER_LEFT, UPPER_LEFT

© Francisco Esquembre, August 2002 111

Easy Java Simulations 3.1. Appendices

Variable: A variable of type int
On Press

The action to trigger when
the mouse button is pressed
on the element

Constant: not applicable
Variable: An action

On Drag The action to trigger when
the mouse button is
dragged on the element

Constant: not applicable
Variable: An action

On Release The action to trigger when
the mouse button is
released on the element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 112

Easy Java Simulations 3.1. Appendices

TextSet

Icon :

Caption: A set of texts

Description: A TextSet is a set of several Text drawable elements.

If you understand how a Text element works, then you know how a TextSet
works. The only difference is that, for some properties, you will need to
specify a whole array of values instead of a simple one. If, still, you specify a
constant value, this value will apply for all the individual texts.

Table of Properties
Name Description Possible values

Texts The string or array of strings
to display

Constant: A constant string (delimited
by quotes or inverted commas),
meaning the same text for all
Variable: A variable array of type
String. Alternatively, a single String
sets the same text for all the elements

X The X coordinates of the
locations of the texts

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates of the
locations of the texts

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Z The Z coordinates of the
locations of the texts

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Visible Whether each individual
element is visible

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type

© Francisco Esquembre, August 2002 113

Easy Java Simulations 3.1. Appendices

boolean. Alternatively, a single boolean
sets the same value for all points

Enabled Whether each individual
element is responsive to user
interaction

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Font The font font used to display
the texts (the same for all
elements)

Constant: The family name, style and
size of any font supported by the
system, separated by commas. Style
must be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18. The default is
decided by your system
Variable: An Object variable of the
class java.awt.Font

Elements The number of individual
elements in the set

Constant: Any constant integer number
Variable: A variable of type int

Position The position of the texts
relative to the hot spot (the
same for all elements)

Constant: One of CENTERED,
HOR_CENTERED, VER_CENTERED,
LOWER_LEFT, UPPER_LEFT
Variable: A variable of type int

Color The color used to draw each
individual element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color applies to all
elements. An array of Object variables
of the class java.awt.Color specifies a
color for each indfivual element

On Press

The action to trigger when
the mouse button is pressed
on the element

Constant: not applicable
Variable: An action

On Drag The action to trigger when
the mouse button is dragged
on the element

Constant: not applicable
Variable: An action

On Release The action to trigger when
the mouse button is released
on the element

Constant: not applicable
Variable: An action

© Francisco Esquembre, August 2002 114

Easy Java Simulations 3.1. Appendices

TraceSet

Icon :

Caption: A set of traces

Description: A TraceSet is a set of several Trace drawable elements.

If you understand how a Trace element works, then you know how a TraceSet
works. The only difference is that, for some properties, you will need to
specify a whole array of values instead of a simple one. If, still, you specify a
constant value, this value will apply for all the individual traces.

Table of Properties
Name Description Possible values

Points The maximum number of
points to draw for each
element

Constant: A constant integer, meaning
the same value for all
Variable: A variable array of type int.
Alternatively, a single int sets the same
value for all the elements

Skip The number of points to
ignore before actually
plotting one for each
element

Constant: A constant integer, meaning
the same value for all
Variable: A variable array of type int.
Alternatively, a single int sets the same
value for all the elements

X The X coordinates for the
next set of points

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Y The Y coordinates for the
next set of points

Constant: A constant number, meaning
the same coordinate for all
Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Z The Z coordinates for the
next set of points

Constant: A constant number, meaning
the same coordinate for all

© Francisco Esquembre, August 2002 115

Easy Java Simulations 3.1. Appendices

Variable: A variable array of type
double. Alternatively, a single double
sets the same coordinate for all points

Visible Whether each individual
element is visible

Constant: Either true or false, which
applies to all the elements
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Elements The number of individual
elements in the set

Constant: Any constant integer number
Variable: A variable of type int

No Repeat Whether to ignore a point
which is equal to the last one
(the same for all the
elements)

Constant: Either true or false.
Variable: A variable of type boolean

Connected Whether to connect the
markers in each element.
This affects only the next
point to be added. Thus,
changing this property
dynamically can produce
discontinuous curves

Constant: either true or false, meaning
the same coordinate for all
Variable: A variable array of type
boolean. Alternatively, a single boolean
sets the same value for all points

Color The color for the connecting
lines for each element

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system.
This constant color will apply toall the
element
Variable: A variable array of type
Object with elements of the class
java.awt.Color. Alternatively, a single
Object variable of the class
java.awt.Color will set the color for all
the elements

Marker Shape The shape for the markers
(the same for all the
elements)

Constant: Either NO_MARKER,
CIRCLE, FILLED_CIRCLE, SQUARE
or FILLED_SQUARE
Variable: A variable of type int

Marker Size The size for the markers in
pixels (the same for all the
elements)

Constant: Any constant integer number
Variable: A variable of type int

Marker Color The color for the markers of
each element

See Color above

© Francisco Esquembre, August 2002 116

Easy Java Simulations 3.1. Appendices

Surface

Icon :

Caption: A 3D surface

Description: This drawable corresponds to a three dimensional surface of the
form (x,y,z) = (x(u,v), y(u,v), z(u,v)). The surface may be drawn filled or in
wire-frame mode. The color for the lines and the inside of the frames may be
specified.

The data must be specified as a three-dimensional array. For instance the code
for (int i=0; i<n; i++) {
 for (int j=0; j<n; j++) {
 data[i][j][0] = -3.14 + (6.28*i)/(n-1);
 data[i][j][1] = -3.14 + (6.28*j)/(m-1);
 data[i][j][2] = Math.sin(data[i][j][0])*Math.cos(data[i][j][1]);
 }
}

where n and m equal 15 and data has been declared with a dimension of
[n][m][3], produces the following surface (displayed in a DrawingPanel3D):

The surface is not interactive, hence it cannot modify its data, nor trigger any
action.

Table of Properties
Name Description Possible values

Data The three dimensional
array with the data. The last
dimension must be 3,
providing for each point the
x,y, and z coordinates (see
the example above)

Constant: Not applicable.
Variable: A variable 3D array of type
double. The array must be dimensioned
like [nu][nv][3], where nu is the
number of u points for which a point in
the surface is computed. Similarly, nv
is the number of v points. The 3 doubles
in the last index hold the values for the
x, y and z coordinates of the point,
respectively

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Close Bottom Whether the first row of
points should form a closed

Constant: Either true or false.
Variable: A variable of type boolean

© Francisco Esquembre, August 2002 117

Easy Java Simulations 3.1. Appendices

poligon
Close Top Whether the last row of

points should form a closed
poligon

Constant: Either true or false.
Variable: A variable of type boolean

Close Left Whether the first column of
points should form a closed
poligon

Constant: Either true or false.
Variable: A variable of type boolean

Close Right Whether the last column of
points should form a closed
poligon

Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
lines of the surface. If
unspecified the lines are not
drawn

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Fill Color The color used to fill the
inside of the surface
frames. If unspecified, the
surface is drawn in wire-
frame mode

See Line Color above

© Francisco Esquembre, August 2002 118

Easy Java Simulations 3.1. Appendices

VectorField

Icon :

Caption: A field of vectors

Description: This drawable corresponds to a two- or three-dimensional set of
vectors which can be used to display a field. The set of vectors are specified by
giving its position in the plane or in the space, its size and an extra magnitude
which is translated into a color code. The color of each vector is extrapolated
linearly from a minimum color which corresponds to the minimum possible
value of the magnitude, to a maximum color, corresponding to the maximum
possible value of the magnitude.

The data must be specified as a three-dimensional array, for 2D vector fields,
or as a four-dimensional array, for 3D vector field. For instance the code

for (int i=0; i<n; i++) {
 for (int j=0; j<m; j++) {
 double x = -1.0 + (2.0*i)/(n-1);
 double y = -1.0 + (2.0*j)/(m-1);
 double r = Math.sqrt(x*x+y*y);
 data[i][j][0] = x;
 data[i][j][1] = y;
 if (r>1.0e-8) {
 data[i][j][2] = x/r;
 data[i][j][3] = y/r;
 data[i][j][4] = r;
 }
 }
}

where n and m equal 15 and data has been declared with a dimension of
[n][m][5], produces the following field (displayed in a 2D DrawingPanel):

© Francisco Esquembre, August 2002 119

Easy Java Simulations 3.1. Appendices

Similarly, the code
for (int i=0; i<n; i++) {
 for (int j=0; j<m; j++) {
 for (int k=0; k<p; k++) {
 double x = -1.0 + (2.0*i)/(n-1);
 double y = -1.0 + (2.0*j)/(m-1);
 double z = -1.0 + (2.0*k)/(p-1);
 double r = Math.sqrt(x*x+y*y+z*z);
 data2[i][j][k][0] = x;
 data2[i][j][k][1] = y;
 data2[i][j][k][2] = z;
 if (r>1.0e-8) {
 data2[i][j][k][3] = x/r;
 data2[i][j][k][4] = y/r;
 data2[i][j][k][5] = z/r;
 data2[i][j][k][6] = r;
 }
 }
 }
}

where n, m and p equal 5 and data2 has been declared with a dimension of
[n][m][p][7], produces the following field (displayed in a 3D DrawingPanel):

The vector field is not interactive, hence it cannot modify its data, nor trigger
any action.

Table of Properties
Name Description Possible values

Data The three dimensional
array with the data (see the
examples above)

Constant: Not applicable.
Variable: A variable 3D or 4D array of
type double

Minimum The minimum value of the
magnitude that can be
color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Maximum The maximum value of the
magnitude that can be
color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Levels The number of different
colors to distinguish

Constant: Any constant integer number
Variable: A variable of type int

© Francisco Esquembre, August 2002 120

Easy Java Simulations 3.1. Appendices

between the minimum and
the maximum

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Whether the automatically
get the extrema for the
magnitude out of the data

Constant: Either true or false.
Variable: A variable of type boolean

Min Color The color that corresponds
to the minimum value of
the magnitude

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Min Color The color that corresponds
to the maximum value of
the magnitude

See Min Color above

Zoom A magnifying factor to
aplly before drawing the
vectors

Constant: Any constant number
Variable: A variable of type int or
double

© Francisco Esquembre, August 2002 121

Easy Java Simulations 3.1. Appendices

Lattice

Icon :

Caption: A visualization of a set of 0’s and 1’s

Description: A Lattice is a drawable element that displays a set of rectangles
with one of two possible colors, depending on the value of the corresponding
element of an array of integers.

Since no values are specified for the x and y components of the rectangles, it is
best to display this drawable in a drawing panel which has the Autoscale X and
Autoscale Y properties set to true.

The data must be specified as a two-dimensional array of integers. For instance
the code

for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 if (Math.random()<0.5) data[i][j] = 0;
 else data[i][j] = 1;

where n equals 32 and data has been declared of type int and with a dimension
of [n][n], produces the following field (displayed in a DrawingPanel with
autoscales set to true and the extrema properties left empty),

The element is not interactive and triggers no action.
Table of Properties

Name Description Possible values
Data The data array with the

values for the points
Constant: Not applicable.
Variable: A variable 2D array of type
int. The array must be dimensioned
[nx][ny] where nx and ny are the
number of divisions in the x and y axes,

© Francisco Esquembre, August 2002 122

Easy Java Simulations 3.1. Appendices

respectively
Visible Whether the element is

visible
Constant: Either true or false.
Variable: A variable of type boolean

Alive Color The color used to draw a
rectangle if the
corresponding value is 1 (in
fact, if it is non zero)

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is white
Variable: An Object variable of the
class java.awt.Color

Dead Color The color used to draw a
rectangle if the
corresponding value is 0

See Live Color above. The default is
black

© Francisco Esquembre, August 2002 123

Easy Java Simulations 3.1. Appendices

CheckerField

Icon :

Caption: A checker visualization of a scalar field

Description: A CheckerField is a drawable element that displays color-coded
rectangles with the same scalar value.

The data must be specified as a three-dimensional array of doubles. The last
dimension is 3 and holds the x, y and z values for each point. The x and y
values are used to locate the rectangles in the parent DrawingPanel’s area. The
z value is considered a magnitude that must be extrapolated into a color code.
For instance the code,

for (int i=0; i<n; i++) {
 for (int j=0; j<n; j++) {
 double x = -4.0 + i*8.0/(n-1);
 double y = -4.0 + j*8.0/(n-1);
 data[i][j][0] = x;
 data[i][j][1] = y;
 double p = (x*x + y*y)/2.0;
 if (p<1.0e-4) data[i][j][2] = 0.5;
 else data[i][j][2] = 0.5*Math.sin(p)/p;
 }
}

where n equals 48 and data has been declared of type double and with a
dimension of [n][n][3], produces the following field (displayed in a
DrawingPanel),

The element is not interactive and triggers no action.
Table of Properties

Name Description Possible values
Data The three dimensional array Constant: Not applicable.

© Francisco Esquembre, August 2002 124

Easy Java Simulations 3.1. Appendices

with the data. The last
dimension must be 3,
providing for each point the
x,y, and z coordinates (see
the example above)

Variable: A variable 3D array of type
double. The array must be dimensioned
like [nx][ny][3], where nx is the
number of x points for which the scalar
value is computed. Similarly, ny is the
number of y points. The 3 doubles in the
last index hold the values for the x, y
and z coordinates of the point,
respectively. The z coordinate is used to
compute the lines and to select the
colors

Minimum Z The minimum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Z The maximum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Levels The number of lines to draw
between the minimum and
the maximum

Constant: Any constant integer number
Variable: A variable of type int

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Z Whether to automatically
compute the minimum and
maximum values for Z

Constant: Either true or false.
Variable: A variable of type boolean

Color Mode The coding system for the
colors

Constant: Either spectrum, grayscale,
dualshade or binary
Variable: A variable of type int

© Francisco Esquembre, August 2002 125

Easy Java Simulations 3.1. Appendices

Contour

Icon :

Caption: A contour display of a scalar field

Description: A Contour is a drawable element that displays lines connecting
points with the same scalar value using a color-coded system.

The data must be specified as a three-dimensional array of doubles. The last
dimension is 3 and holds the x, y and z values for each point. The x and y
values are used to locate the rectangles in the parent DrawingPanel’s area. The
z value is considered a magnitude that must be extrapolated into a color code.
For instance the code,

for (int i=0; i<n; i++) {
 for (int j=0; j<n; j++) {
 double x = -4.0 + i*8.0/(n-1);
 double y = -4.0 + j*8.0/(n-1);
 data[i][j][0] = x;
 data[i][j][1] = y;
 double p = (x*x + y*y)/2.0;
 if (p<1.0e-4) data[i][j][2] = 0.5;
 else data[i][j][2] = 0.5*Math.sin(p)/p;
 }
}

where n equals 32 and data has been declared of type double and with a
dimension of [n][n][3], produces the following field (displayed in a
DrawingPanel),

The element is not interactive and triggers no action.
Table of Properties

Name Description Possible values
Data The data array with the value Constant: Not applicable.

© Francisco Esquembre, August 2002 126

Easy Java Simulations 3.1. Appendices

for the points Variable: A variable 3D array of type
double. The array must be dimensioned
like [nx][ny][3], where nx is the
number of x points for which the scalar
value is computed. Similarly, ny is the
number of y points. The 3 doubles in the
last index hold the values for the x, y
and z coordinates of the point,
respectively. The z coordinate is used to
compute the lines and to select the
colors

Minimum Z The minimum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Z The maximum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Levels The number of lines to draw
between the minimum and
the maximum

Constant: Any constant integer number
Variable: A variable of type int

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Z Whether to automatically
compute the minimum and
maximum values for Z

Constant: Either true or false.
Variable: A variable of type boolean

Color Mode The coding system for the
colors

Constant: Either spectrum, grayscale
or dualshade
Variable: A variable of type int

© Francisco Esquembre, August 2002 127

Easy Java Simulations 3.1. Appendices

SurfacePlot

Icon :

Caption: A 3D visualization of a scalar field

Description: A Surface is a drawable element that displays a 3D surface of the
form z=f(x,y), using a color-coded system.

The data must be specified as a three-dimensional array of doubles. The last
dimension is 3 and holds the x, y and z values for each point. The x and y
values are used to locate the rectangles in the parent DrawingPanel’s area. The
z value is considered a magnitude that must be extrapolated into a color code.
For instance the code,

for (int i=0; i<n; i++) {
 for (int j=0; j<n; j++) {
 double x = -4.0 + i*8.0/(n-1);
 double y = -4.0 + j*8.0/(n-1);
 data[i][j][0] = x;
 data[i][j][1] = y;
 double p = (x*x + y*y)/2.0;
 if (p<1.0e-4) data[i][j][2] = 0.5;
 else data[i][j][2] = 0.5*Math.sin(p)/p;
 }
}

where n equals 64 and data has been declared of type double and with a
dimension of [n][n][3], produces the following field (displayed in a
DrawingPanel),

The element is not interactive and triggers no action.

Table of Properties

Name Description Possible values

© Francisco Esquembre, August 2002 128

Easy Java Simulations 3.1. Appendices

Data The data array with the value
for the points

Constant: Not applicable.
Variable: A variable 3D array of type
double. The array must be dimensioned
like [nx][ny][3], where nx is the
number of x points for which the scalar
value is computed. Similarly, ny is the
number of y points. The 3 doubles in the
last index hold the values for the x, y
and z coordinates of the point,
respectively. The z coordinate is used to
compute the lines and to select the
colors

Minimum Z The minimum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Maximum Z The maximum Z value that
can be color-coded

Constant: Any constant number
Variable: A variable of type int or
double

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Autoscale Z Whether to automatically
compute the minimum and
maximum values for Z

Constant: Either true or false.
Variable: A variable of type boolean

Color Mode The coding system for the
colors

Constant: Either spectrum, grayscale
or dualshade
Variable: A variable of type int

© Francisco Esquembre, August 2002 129

Easy Java Simulations 3.1. Appendices

Sphere

Icon :

Caption: A 3D sphere (or ellipsoid)

Description: This drawable displays a three dimensional sphere. Actually, it
displays an ellipsoid, or even part of it.

The ellipsoid is specified by giving the location of its center, the length of the
semiaxes and its main direction. A particular choice for the direction allows
using any vector as axes for the surface. This help produce slanted ellipsoids.

Finally, one can draw part of the ellipsoid by providing minimum and
maximum value for the angles that describe the meridians and parallels of the
ellipsoid.

Three sample sphere elements

The sphere is not interactive, hence it cannot modify its data, nor trigger any
action.

Table of Properties
Name Description Possible values

Center X The x coordinate of the
center of the ellipsoid

Constant: Any constant number
Variable: A variable of type int or
double

Center Y The y coordinate of the
center of the ellipsoid

Constant: Any constant number
Variable: A variable of type int or
double

Center Z The z coordinate of the
center of the ellipsoid

Constant: Any constant number
Variable: A variable of type int or
double

Semiaxis X The length of the first
semiaxis (if direction is x,
this corresponds to the x
semiaxis)

Constant: Any constant number
Variable: A variable of type int or
double

Semiaxis Y The length of the second Constant: Any constant number

© Francisco Esquembre, August 2002 130

Easy Java Simulations 3.1. Appendices

semiaxis (if direction is x,
this corresponds to the y
semiaxis)

Variable: A variable of type int or
double

Semiaxis Z The length of the third
semiaxis (if direction is x,
this corresponds to the z
semiaxis)

Constant: Any constant number
Variable: A variable of type int or
double

Direction The direction in which to
draw the ellipsoid

Constant: One of x, y, z or custom. x, y
and z produce an ellipsoid with its first
semiaxis parallel to the corresponding
main axis and the two others in angles
of 90 degrees from the first one. custom
instructs the ellipsoid to use the Axes
property to determine the direction of its
axes
Variable: A variable of type int

Axes If Direction is set to
custom, this must contain
an array of 9 doubles with
the coordinates of the three
vectors to use as axes. The
firt three elements of the
array form the first axis,
ans so on

Constant: Not applicable.
Variable: A variable array of type
double with dimension [9]

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Meridians The number of divisions in
the alpha angle of the
ellipsoid

Constant: Any constant integer number
Variable: A variable of type int

Parallels The number of divisions in
the beta angle of the
ellipsoid

Constant: Any constant integer number
Variable: A variable of type int

Min Alpha The minimum value (in
degrees) for the alpha angle
of the ellipsoid. 0 by
default

Constant: Any constant integer number
Variable: A variable of type int

Max Alpha The maximum value (in
degrees) for the alpha angle
of the ellipsoid. 360 by
default

Constant: Any constant integer number
Variable: A variable of type int

Min Beta The minimum value (in
degrees) for the beta angle
of the ellipsoid. -90 by
default

Constant: Any constant integer number
Variable: A variable of type int

Min Beta The maximum value (in
degrees) for the beta angle
of the ellipsoid. 90 by
default

Constant: Any constant integer number
Variable: A variable of type int

Close Bottom Whether to close the
bottom of the incomplete

Constant: Either true or false.
Variable: A variable of type boolean

© Francisco Esquembre, August 2002 131

Easy Java Simulations 3.1. Appendices

ellipsoid whenever Min
Beta is greater than -90

Close Top Whether to close the top of
the incomplete ellipsoid
whenever Max Beta is
smaller than 90

Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
lines of the ellipsoid. If
unspecified the lines are not
drawn

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Fill Color The color used to fill the
inside of the ellipsoid
frames. If unspecified, the
ellipsoid is drawn in wire-
frame mode

See Line Color above

© Francisco Esquembre, August 2002 132

Easy Java Simulations 3.1. Appendices

Cube

Icon :

Caption: A 3D cube

Description: This drawable displays a straight three dimensional cube, with
possible different sides length.

The cube is specified by giving the location of its origin and the length of its
sides. One can also instruct the body whether to draw its top and bottom sides
or not.

Three sample cube elements

The cube is not interactive, hence it cannot modify its data, nor trigger any
action.

Table of Properties
Name Description Possible values

Origin X The x coordinate of the
origin of the cube

Constant: Any constant number
Variable: A variable of type int or
double

Origin Y The y coordinate of the
origin of the cube

Constant: Any constant number
Variable: A variable of type int or
double

Origin Z The z coordinate of the
origin of the cube

Constant: Any constant number
Variable: A variable of type int or
double

Size X The length of the cube
along the x axis

Constant: Any constant number
Variable: A variable of type int or
double

Size Y The length of the cube
along the y axis

Constant: Any constant number
Variable: A variable of type int or
double

Size Z The length of the cube Constant: Any constant number

© Francisco Esquembre, August 2002 133

Easy Java Simulations 3.1. Appendices

along the z axis Variable: A variable of type int or
double

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Close Bottom Whether to close the
bottom of the cube

Constant: Either true or false.
Variable: A variable of type boolean

Close Top Whether to close the top of
the cube

Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
lines of the cube. If
unspecified the lines are not
drawn

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Fill Color The color used to fill the
sides of the cube. If
unspecified, the cube is
drawn in wire-frame mode

See Line Color above

© Francisco Esquembre, August 2002 134

Easy Java Simulations 3.1. Appendices

Cilinder

Icon :

Caption: A 3D cilinder (with elliptical base)

Description: This drawable displays a three dimensional cilinder. Actually, it
displays a cilinder with an elliptical base.

The cilinder is specified by giving the location of its center, the length of the
semiaxes, its height and its main direction. A particular choice for the direction
allows using any vector as axes for the cilinder. This help produce slanted
cilinders.

One can instruct the cilinder whether to draw its top and bottom sides or not.
Finally, one can draw part of the cilinder by providing minimum and
maximum value for the angle that describes the circular parallels of the
cilinder.

Three sample cilinder elements

The cilinder is not interactive, hence it cannot modify its data, nor trigger any
action.

Table of Properties
Name Description Possible values

Center X The x coordinate of the
center of the cilinder

Constant: Any constant number
Variable: A variable of type int or
double

Center Y The y coordinate of the
center of the cilinder

Constant: Any constant number
Variable: A variable of type int or
double

Center Z The z coordinate of the
center of the cilinder

Constant: Any constant number
Variable: A variable of type int or
double

Semiaxis A The length of the first
semiaxis (if direction is x,
this corresponds to the x

Constant: Any constant number
Variable: A variable of type int or
double

© Francisco Esquembre, August 2002 135

Easy Java Simulations 3.1. Appendices

semiaxis)
Semiaxis B The length of the second

semiaxis (if direction is x,
this corresponds to the y
semiaxis)

Constant: Any constant number
Variable: A variable of type int or
double

Height The length of the side of
the cilinder

Constant: Any constant number
Variable: A variable of type int or
double

Direction The direction in which to
draw the cilinder

Constant: One of x, y, z or custom. x, y
and z produce a cilinder with its first
semiaxis parallel to the corresponding
main axis and the two others in angles
of 90 degrees from the first one. custom
instructs the cilinder to use the Axes
property to determine the direction of its
axes
Variable: A variable of type int

Axes If Direction is set to
custom, this must contain
an array of 9 doubles with
the coordinates of the three
vectors to use as axes. The
firt three elements of the
array form the first axis,
ans so on

Constant: Not applicable.
Variable: A variable array of type
double with dimension [9]

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Circle Sides The number of divisions in
the each parallel circle

Constant: Any constant integer number
Variable: A variable of type int

Height Sides The number of divisions
along the side

Constant: Any constant integer number
Variable: A variable of type int

Min Angle The minimum value (in
degrees) for the angle of
the base. 0 by default

Constant: Any constant integer number
Variable: A variable of type int

Max Angle The maximum value (in
degrees) for the angle of
the base. 360 by default

Constant: Any constant integer number
Variable: A variable of type int

Close Bottom Whether to close the
bottom of the cilinder

Constant: Either true or false.
Variable: A variable of type boolean

Close Top Whether to close the top of
the cilinder

Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
lines of the cilinder. If
unspecified the lines are not
drawn

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to

© Francisco Esquembre, August 2002 136

Easy Java Simulations 3.1. Appendices

blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

Fill Color The color used to fill the
inside of the cilinder
frames. If unspecified, the
cilinder is drawn in wire-
frame mode

See Line Color above

© Francisco Esquembre, August 2002 137

Easy Java Simulations 3.1. Appendices

Cone

Icon :

Caption: A 3D cone (with elliptical base)

Description: This drawable displays a three dimensional cone. Actually, it
displays a cone with an elliptical base.

The cone is specified by giving the location of its center, the length of the
semiaxes, its height and its main direction. A particular choice for the direction
allows using any vector as axes for the cone. This help produce slanted cones.

One can instruct the cone whether to draw its bottom side or not. Finally, one
can draw part of the cone by providing minimum and maximum value for the
angle that describes the circular parallels of the cone.

Three sample cone elements

The cone is not interactive, hence it cannot modify its data, nor trigger any
action.

Table of Properties
Name Description Possible values

Center X The x coordinate of the
center of the cone

Constant: Any constant number
Variable: A variable of type int or
double

Center Y The y coordinate of the
center of the cone

Constant: Any constant number
Variable: A variable of type int or
double

Center Z The z coordinate of the
center of the cone

Constant: Any constant number
Variable: A variable of type int or
double

Semiaxis A The length of the first
semiaxis (if direction is x,
this corresponds to the x
semiaxis)

Constant: Any constant number
Variable: A variable of type int or
double

Semiaxis B The length of the second Constant: Any constant number

© Francisco Esquembre, August 2002 138

Easy Java Simulations 3.1. Appendices

semiaxis (if direction is x,
this corresponds to the y
semiaxis)

Variable: A variable of type int or
double

Height The length of the side of
the cone

Constant: Any constant number
Variable: A variable of type int or
double

Direction The direction in which to
draw the cone

Constant: One of x, y, z or custom. x, y
and z produce a cone with its first
semiaxis parallel to the corresponding
main axis and the two others in angles
of 90 degrees from the first one. custom
instructs the cone to use the Axes
property to determine the direction of its
axes
Variable: A variable of type int

Axes If Direction is set to
custom, this must contain
an array of 9 doubles with
the coordinates of the three
vectors to use as axes. The
firt three elements of the
array form the first axis,
ans so on

Constant: Not applicable.
Variable: A variable array of type
double with dimension [9]

Visible Whether the element is
visible

Constant: Either true or false.
Variable: A variable of type boolean

Circle Sides The number of divisions in
the each parallel circle

Constant: Any constant integer number
Variable: A variable of type int

Height Sides The number of divisions
along the side

Constant: Any constant integer number
Variable: A variable of type int

Min Angle The minimum value (in
degrees) for the angle of
the base. 0 by default

Constant: Any constant integer number
Variable: A variable of type int

Max Angle The maximum value (in
degrees) for the angle of
the base. 360 by default

Constant: Any constant integer number
Variable: A variable of type int

Close Bottom Whether to close the
bottom of the cone

Constant: Either true or false.
Variable: A variable of type boolean

Line Color The color used to draw the
lines of the cone. If
unspecified the lines are not
drawn

Constant: One of the following basic
color names: black, blue, cyan,
darkGray, gray, green, lightGray,
magenta, orange, pink, red, white,
yellow.
Alternatively, the red, green and blue
integer components of the color, from 0
to 255, separated by commas. for
instance, 0,0,255 is equivalent to
blue.The default is decided by your
system
Variable: An Object variable of the
class java.awt.Color

© Francisco Esquembre, August 2002 139

Easy Java Simulations 3.1. Appendices

Fill Color The color used to fill the
inside of the cone frames. If
unspecified, the cone is
drawn in wire-frame mode

See Line Color above

© Francisco Esquembre, August 2002 140

Easy Java Simulations 3.1. Appendices

© Francisco Esquembre, August 2002 141

E
E. Ejs advanced reference

This appendix describes further characteristics of Ejs that don’t fit in the
general manual. They are considered advanced features and are therefore
reserved for the more skilled user.

Personalizing the list of view elements
Ejs can be run with a special command-line option to display less elements
than are actually available. This can be useful to configure a panel for the view
which is easier to cope with for newcomers. Instead of frightening the user
with a long list of view elements to learn, you can select a handful of them,
those that you and your users are more likely to need, and hide the others.

It can also be useful to, as more and more elements are added to Ejs, keep the
number of elements offered at a time under reasonable limits.

Finally, it can be also useful to presenty different choices of view elements for
different tipes of tasks. For instance, one could run Ejs with a set of view
elements specially devoted for 3D graphics only, or for electric circuits only
(when and if these elements are added to Ejs, of course ☺), and so on.

To do this, you need to modify the batch file with which you want to run Ejs.
The best way is to copy the one you are using now3 and give the copy an
appropriate name, for instance, Ejs_simple.bat. In it, you have to edit the last
line and append, to the end of it, the following text

-elements simpleElements.txt

where simpleElements.txt (or any other name) must be a text file that you must
create in your Ejs data directory4. The contents of this file must be similar to
the following:

Containers=Frame Dialog Panel EMPTY DrawingPanel PlottingPanel
DrawingPanel3D

Basic=Label Button CheckBox Slider Field TextField Bar
Drawables=Particle Arrow Image Text Trace EMPTY EMPTY ParticleSet

ArrowSet ImageSet TextSet TraceSet

3 See section 2.2 of the manual.
4 See section 2.3 of the manual to locate this directory.

Easy Java Simulations 3.1. Appendices

That is, it must contain one line for each of the entries Containers, Basic and
Drawables, corresponding to the three group of possible view elements. For
each group, you need to specify the list of elements that are offered, in one
single line (although I have been forced to break some of the lines above
because they do not fit in the page width of this document) and separated by
blank spaces.

The names of the elements must match exactly any of the existing elements, as
listed in appendix D. The special keyword EMPTY allows you to separate
icons by leaving an empty space.

For instance, my Windows Ejs_simple.bat batch file reads
set JAVAROOT=c:\jdk1.3
set EjsDir=Simulations
%JAVAROOT%\bin\java -classpath

%JAVAROOT%\lib\tools.jar;%JAVAROOT%\jre\lib\rt.jar;data\osejs.jar;data\
HotEqn.jar -Dcodebase=. -Duser.home="%EjsDir%"
org.colos.ejs.osejs.Osejs -locale es ES -elements simpleElements.txt

My simpleElements.txt file, which is in the data directory, reads exactly as the
example above and, when I run Ejs_simple.bat, I get the following simplified
view panel:

Running Ejs with different sets of options
As you know from section 4.1 of the manual, Ejs has some options that can be
used to specify things like the location at start-up of Ejs main window, how
will Ejs generate Html pages (if any) , and others…

This is most easily changed by using Ejs option dialog, as described there.
However, you can also use a command line option similar to the previous one.

© Francisco Esquembre, August 2002 142

Easy Java Simulations 3.1. Appendices

This can be of use if you want to prepare different sets of options to be used by
different users or even by yourself under different circumstances.

For this, you’ll need to edit the batch file with which you want to start Ejs and
append to it the text

-options myOptions.txt

where myOptions.txt (or any other name) must be a text file that you must
create in your Ejs data directory. The contents of this file must be similar to
the following:

position=CENTER
generateHtml=ONE_PAGE
removeJavaFile=true
showHiddenPages=false
font=<default>

Again, the file is made of entries, each of them with an option. Each entry must
be in a single, different line.

The accepted entries and options are listed in the table below.
Table of Configurration Options

Entry Description Possible values
position The start-up location of Ejs

main window
One of CENTER, TOPLEFT or
CUSTOM:x,y
In this last case, x and y stand for
the location on the screen (in
pixels) of the upper-left corner of
Ejs main Window

generateHtml How to generate Html files One of LEFT_FRAME,
TOP_FRAME, ONE_PAGE or
NONE

removeJavaFile Whether to remove the
generated Java file after
running a simulation

Either true or false

showHiddenPages Whether to show hidden
pages

Either true or false

font The default font The family name, style and size of
any font supported by the system,
separated by commas. Style must
be either: plain, bold, italic,
bold|italic. Example:
Monospaced,italic,18.
The special tag <default> uses the
default font as decided by your
system

© Francisco Esquembre, August 2002 143

Easy Java Simulations 3.1. Appendices

This page intentionally left blank

© Francisco Esquembre, August 2002 144

	Programming algorithms in Java
	Declaration of variables
	Operators
	Sentences and Expressions
	Bifurcations
	Loops (while, do and for)
	Special sentences
	Library methods

	Some useful Java classes
	How to use Java classes
	java.lang.Math

	(or simply Math)
	java.awt.Color
	java.awt.Font
	java.awt.Dimension
	java.awt.Point
	java.awt.Rectangle
	java.text.DecimalFormat

	Practical hint
	About Html
	The body tag

	�
	Block level elements
	Headings
	Address
	Paragraphs
	Lists
	UNORDERED LISTS
	ORDERED (I.E. NUMBERED) LISTS
	DEFINITION LISTS
	DIR AND MENU

	Preformatted Text
	XMP, LISTING AND PLAINTEXT

	Div and Center
	Blockquote
	Form
	Hr - horizontal rules
	Tables

	Text level elements
	Font style elements
	Phrase Elements
	Form fields
	Select
	TextArea

	�
	Special Text level Elements
	The A (anchor) element
	Img - inline images
	Applet
	Font
	Basefont
	Br
	Map

	Character Entities for ISO Latin-1

	Reference pages for elements for the view
	Containers
	Frame
	Dialog
	Panel
	SplitPanel
	TabbedPanel
	DrawingPanel
	PlottingPanel
	DrawingPanel3D

	Basic elements
	Button
	Checkbox
	RadioButton
	Slider
	Field (or NumberField)
	TextField
	Label
	TextArea
	Bar
	Sound

	Drawables
	Particle
	Arrow
	Image
	Text
	Trace
	Poligon
	LightBulb
	ParticleSet
	ArrowSet

	ImageSet
	
	TextSet
	TraceSet
	Surface
	VectorField
	Lattice
	CheckerField
	Contour
	SurfacePlot
	Sphere
	Cube
	Cilinder
	Cone

	Ejs advanced reference
	Personalizing the list of view elements
	Running Ejs with different sets of options

