
 

 Easy Java Simulations 
 
 
 

The manual  
for version 3.1 

 
 
 

 

Francisco Esquembre
Universidad de Murcia 

 
 

Ejs uses Open Source Physics tools 
by Wolfgang Christian 

 
 

August 2002 
 http://fem.um.es/Ejs 

 

http://fem.um.es/Ejs


Foreword 

Simulations are playing an increasingly important role in the way 
we teach or do Science. Specially in Education, where computers 
are being used more and more as a way to turn lectures more 
attractive to students and to help achieve a deeper understanding 
on the subject being taught. 

However, it can not be said that computer simulations are used by 
most of our teachers and trainers. In many cases, this is due to the 
fact that teachers are reluctant to use a technology they do not 
fully understand or control. In many others, that they do not find a 
product that completely meets their educational needs. 

A good solution to both problems is to help teachers create their 
own simulations. We have found that, by creating a simulation, 
many teachers get a new perspective of the phenomenon they are 
trying to explain, which almost always increases their enthusiasm 
about the use of this technology with their students. 

An alternative approach, and a very promising one, is to let 
students create their own simulations, thus engaging in what is 
called by educational researchers constructive modeling. This has 
the advantage of getting the student to do science in an 
exploratory and constructive way, achieving many of the 
recommended best-practices in the classroom. 

Creating a simulation by oneself requires an extra effort, this is 
the truth. The starting point, and this is the important part, is a full 
understanding of the phenomenon being simulated. From this, 
some technicalities are needed to express the behavior of the 
phenomenon in computer form. 

This manual and the software it describes, Easy Java 
Simulations (Ejs for short), address this problem. Both have been 
specifically designed to teach how to create scientific simulations 
in Java, in a quick and simple way.  

© Francisco Esquembre, August 2002 1



Easy Java Simulations 3.1. The Manual  
 

 

Their audience are science students, teachers or researchers who 
have a basic knowledge of programming computers, but who 
cannot afford the big investment of time needed to create a 
complete graphical simulation. 

They may be able to describe the models of phenomena of their 
respective disciplines in terms of algorithms of a computer 
language, but still need an extra effort to create a sophisticated, 
interactive graphical user interface, in the style of simulations and 
software programs one can find nowadays in the Internet. 

With this situation in mind, Ejs has been designed to help a 
person who wants to create a simulation, concentrate most of 
his/her time in writing and refining the algorithms of the 
underlying scientific model (which is his/her real expertise) and 
dedicate the minimum possible amount of time to the 
programming techniques. And by doing so, still obtain an 
independent, high performance, Internet-aware, final product. 

This manual is structured in two parts. The first one provides a 
quick starting guide to help you get the basics and have you up 
and running pretty quickly. The second one goes through a deeper 
coverage of all the concepts involved in creating a simulation as 
well as thoroughly describes Ejs interface and capabilities. 

The final goal is to teach you how to structure a simulation so that 
it can be correctly translated into a computer program, and 
instruct you how to use Ejs to implement this structure into a Java 
applet, including instructions to distribute it through the Internet.  

The choice of Java as development language is justified in terms 
of its wide acceptance by the international Internet community, 
and the fact that it is supported under several software platforms. 
This implies that Ejs, and the simulations created using it, can be 
used as independent programs under different operating systems, 
or be distributed via Internet and run within html pages by most 
popular web browsers.  

© Francisco Esquembre, August 2002 2



Easy Java Simulations 3.1. The Manual  
 

 

 

Contents 

PART I. Getting Started.............................5 

1. Introduction ..................................................................7 
1.1 What is Easy Java Simulations?................................................................................................7 
1.2 How to use this manual ..............................................................................................................8 
1.3 Acknowledments.........................................................................................................................9 

2. Before we start ............................................................11 
2.1 Documentation..........................................................................................................................11 
2.2 Installation Instructions ...........................................................................................................11 
2.3 Organizational information .....................................................................................................13 
2.4 Running Easy Java Simulations..............................................................................................14 

3. A first complete example ............................................21 
3.1 The structure of a simulation ..................................................................................................21 
3.2 Lissajous’ figures ......................................................................................................................23 
3.3 Writing an introduction ...........................................................................................................24 
3.4 Building the model....................................................................................................................27 
3.5 Creating the view......................................................................................................................34 
3.6 Running the simulation............................................................................................................41 
3.7 Adding interactivity..................................................................................................................45 
3.8 Running the complete simulation............................................................................................52 
3.9 Adding some more interactivity ..............................................................................................52 

4. Using your simulation ................................................55 
4.1 What happens when you run a simulation .............................................................................57 
4.2 Running your simulation as an applet ....................................................................................59 
4.3 Running your simulation as an application............................................................................63 
4.4 Distribution of simulations ......................................................................................................64 

PART II. Detailed description............65 

5. Building models with Ejs............................................67 
5.1 Definition of a model ................................................................................................................67 
5.2 Ejs interface for the model.......................................................................................................71 
5.3 Declaring variables...................................................................................................................73 
5.4 Initializating the model ............................................................................................................79 

© Francisco Esquembre, August 2002 3



Easy Java Simulations 3.1. The Manual  
 

 
5.5 Evolution equations ..................................................................................................................80 
5.6 Writing constraint equations...................................................................................................87 
5.7 Custom methods .......................................................................................................................88 

6. Creating a view with Ejs .............................................95 
6.1 Graphical interfaces .................................................................................................................95 
6.2 Linking variables to properties ...............................................................................................98 
6.3 How a simulation runs .............................................................................................................99 
6.4 Building the view ....................................................................................................................100 
6.5 Editing properties...................................................................................................................105 
6.6 Learning more about view elements .....................................................................................109 

7. A second example: predator-prey systems ...............111 
7.1 Description of the phenomenon.............................................................................................111 
7.2 Introduction ............................................................................................................................113 
7.3 Model .......................................................................................................................................113 
7.4 View .........................................................................................................................................115 
7.5 Running the simulation..........................................................................................................118 
7.6 Improving the use of our simulation.....................................................................................119 
7.7 A final methodological remark..............................................................................................126 

Appendices ..........................................................127 

 

© Francisco Esquembre, August 2002 4



 

 

PART I. Getting Started 

© Francisco Esquembre, August 2002 5



Easy Java Simulations 3.1. The Manual  
 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 6



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 7

 

1 
1.  Introduction 

1.1  What is Easy Java Simulations? 
Easy Java Simulations (from now on, Ejs) is a software tool designed for the 
creation of discrete computer simulations. 

A discrete computer simulation, or simply a computer simulation, is a 
computer program that tries to reproduce, for pedagogical or scientific 
purposes, a natural phenomenon through the visualization of the different 
states that it can have. Each of these states is described by a set of variables 
that change in time due to the iteration of a given algorithm. 

We shall describe, later in this manual, the structure of a simulation in detail. 
For the moment, this suffices to learn that Ejs is a program that helps you 
create other programs; more precisely, scientific simulations. 

There exist many programs that help create other programs. The most basic 
ones are called compilers; the most complete are the tools for visual 
programming, very popular in recent years. Ejs would fit into the category of 
the so-called code generators. 

But what makes Ejs different from most other products is that Ejs is not 
designed to make life easier for professional programmers, but has been 
conceived by science teachers, for science teachers and students. That is, for 
people who, like you and me, are more interested in the content of the 
simulation, the simulated phenomenon itself, and much less in the technical 
aspects needed to build the simulation. 

Hence, Ejs provides a conceptual structure and simplified tools that allow 
concentrate most of your time in the description of the model of the 
phenomenon you want to simulate. 

Nevertheless, the final result, which is automatically generated by Ejs from 
your description, could, in terms of efficiency and sophistication, be taken as 
the creation of a professional programmer. In particular, Ejs creates Java 
applets that are independent, multi-platform, which can be visualized using any 



Easy Java Simulations 3.1. The Manual  
 

 

Web browser (and therefore distributed through the Internet), read data across 
the net and be controlled using scripts from within html pages. 

Because there is an educational value in the process of creating a simulation, 
Ejs can also be used as a pedagogical tool itself. With it, you can ask your 
students to create a simulation by themselves, perhaps by following some 
guidelines provided by you. This way, Ejs can help your students make their 
conceptions explicit. Used in groups, it can also improve your students’ 
capabilities to discuss and communicate about science. 

1.2  How to use this manual 
Do not worry if this manual looks rather thick when it comes out of your 
printer. You don’t need to read it from cover to cover to start creating your 
simulations.  

To start working with Ejs, you should definitely complete part I. This will 
instruct you how to install and run Ejs in your computer and will guide you 
through a step-by-step example of creation of a simple simulation. After 
reading part I, you will have a general feeling about how to use Ejs and, 
depending on your degree of expertise with computers in general, you could be 
able to generate a second simulation on your own. Chapter 4. in part I, finally 
tells you how to distribute your simulation to others or publish it on the 
Internet (if you have a web server at hand). 

If, later on, you want to get a full description of the functionality of Ejs, then 
you should also read part II. Finally, the appendices contain information 
intended to be used as reference only. That is, you will not read them until you 
need a particular information, then you’ll just go there and search for this 
information. 

If, on the other hand, you are an expert user of computers, or you have 
programming experience, you may choose to skip part I and get directly to the 
detailed description of Ejs. 

It is always advisable to have a copy of Ejs running in your computer when 
you read this manual, so that you can try the examples on your own and see 
that they actually work.  

Have a good time and enjoy Easy Java Simulations! 

© Francisco Esquembre, August 2002 8



Easy Java Simulations 3.1. The Manual  
 

 

1.3  Acknowledments 
Easy Java Simulations, now in version 3.1, is the result of a project that has 
been carried out for several years and under different conceptions and 
implementations. For this reason it owes a lot to contributions from several 
groups of people. 

The first group I would like to mention is that of my colleagues at the 
University of Murcia, Spain, Professors Ernesto Martín and Jose Miguel 
Zamarro who, as members of the Colos group in Murcia 
(http://colos3.fcu.um.es), always shared their interest and enthusiasm with me 
for this project. 

The second group of people is the whole Colos community 
(http://www.colos.org), a group that originated in 1989 in a project founded by 
the (then called) European Community, that evolved autonomously from then, 
and that now comprises members from about seventeen universities and 
institutions from all over the world. 

I am also very grateful to Vincent Boland, Melissa Cheung, Jee Park and 
James Sulzen, the group of master students from Stanford University, 
California, who, in the summer of 2000, took a previous version of Ejs as their 
case study for the interactive media project they had to conduct 
(http://ldt.stanford.edu/~mcheung/MelissaCheung_portfolio/EJS.html) as part 
of their Master studies under Professor Decker Walker of the School of 
Education of this university. 

Following this chronological order, but with special emphasis, I am in great 
debt to Professor Wolfgang Christian of Davidson College, North Carolina, 
who introduced me to the development of both his Physlets 
(http://webphysics.davidson.edu/Applets/Applets.html) and his more recent 
work in the Open Source Physics project (http://www.opensourcephysics.org). 
In fact, release 3.0 of Ejs, whose main innovation was on the simplification of 
the construction of the view of a simulation, was possible only thanks to the 
use of the new display Java classes that originated in this project. 

And last, but not least, I am also very grateful to Professor Fu-Kwun Hwang, 
of the National Taiwan Normal University, Taiwan, (http://) for his interest and 
support for Ejs and also for the joint work in the development of new 
educational web services based on Ejs. 

A special place of honor is reserved for my family: my wife Araceli and my 
daughters Araceli and Maria Belén, for all those weekend evenings that I 
spent, and still spend!, in front of the computer. 

© Francisco Esquembre, August 2002 9

http://colos3.fcu.um.es/
http://www.colos.org/
http://ldt.stanford.edu/~mcheung/MelissaCheung_portfolio/EJS.html
http://webphysics.davidson.edu/Applets/Applets.html
http://www.opensourcephysics.org/


Easy Java Simulations 3.1. The Manual  
 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 10



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 11

 

2 
2.  Before we start 

Before we start working with Ejs, let us make sure that you have everything 
we need. 

2.1  Documentation 
This manual is the right place to begin with. It is (so far) the one and only 
written description of this version of Ejs. If you need an updated copy of it, go 
to the official web pages for Ejs in http://fem.um.es/Ejs. You will also find 
there links to examples, software updates and any other source of information 
that might appear. 

This manual will tell you how to obtain and install the software you need, will 
guide you through the basics of Ejs and also get you to the secrets of it.  

There is a second source for information, which are the examples bundled with 
the distribution of Ejs. It is very convenient that, after getting familiarized with 
Ejs, you take a look at these examples. The directory _examples in your 
working directory1 contains complete, non-trivial simulations that can help you 
find how to do certain things that you may be interested in doing, and perhaps 
serve as source of inspiration for your own simulations. 

Finally, you should also have a look at Ejs official web pages (see the address 
above) under the link Examples. They contain some other interesting examples 
created either by the author or by other users of Ejs. When you finish your 
simulation, don’t forget to send it to the author (that is, me) at the e-mail 
address fem@um.es  for inclusion in this gallery of examples! 

2.2  Installation Instructions 
You also need the software, of course. If someone installed Ejs for you in your 
computer, then you (have a good friend and) can proceed to the next section. If 
this is not the case, here go the necessary installation instructions. 

                                                           
1 Learn in section 2.3  how to locate it in your disk. 

http://fem.um.es/Ejs
mailto:fem@um.es


Easy Java Simulations 3.1. The Manual  
 

 

 

Before even thinking in installing Ejs you must have the Java Software 
Development Kit (Java SDK) installed in your system. Latest version I tried 
to work with, and never caused me any kind of problems at the moment of this 
writing, is version 1.3, which I therefore recommend2. For this, please obtain 
Java SDK free distribution file from Sun at its web site http://java. .sun com, 
and run the standard installation procedure for it.  

This procedure is very simple, just double-click the (rather big) installation file 
and answer Yes to every question it asks. 

During the installation3 of Java SDK, you are offered to select an installation 
directory, which defaults to c:\jdk1.3 (maybe c:\jdk1.3_xxx if it is the latest 
release of this version). Unless you have special requirements, I recommend 
that you accept this. 

 

Now, installing Ejs simply consists in uncompressing4 the distribution file 
Ejs.zip in any directory you want; c:\Ejs or c:\Ejs3.1 are both good choices.  

Because some Java plug-ins (for instance, jdk 1.4) can work incorrectly with 
file or directory names which contain white spaces, I recommend choosing a 
directory that has no white spaces in its name, nor in its path, as installation 
directory for Ejs. For instance, C:\My Ejs or C:\My documents\Ejs are not 
good choices. 

The file Ejs.zip can be obtained, once more, from the official web pages 
indicated above.  

If you got Ejs from a CD then perhaps you don’t need to uncompress the file 
and you have already a directory in the CD named Ejs. If this is the case, copy 
this directory to any place in your hard disk. The root directory c:\ is a good 
place, but you may choose any other that suits your hard disk organization. 

IMPORTANT NOTICE: If, and only if, you chose an installation directory for 
Java SDK different from the default c:\jdk1.3, then you must edit the batch5 

                                                           
2 Yes, I have tried version 1.4 of the SDK. Although it works well most of the time, I have found some 
strange behaviour in its plug-in for web browsers, which quits the browser (after a second or so) when 
displaying applets that use the Mid-point or Runge-Kutta algorithm for solving differential equations… 
You can still decide to use sdk 1.4, but you have been warned ☺. 
3 The description of the installation procedure is given for the Windows family of operating systems. 
However, Ejs (and Java SDK) works under Windows 98/ME/2000/XP, Linux and MacOS. 
4 If you don’t have an appropriate uncompressing utility, get one from http://www.winzip.com/. They 
have free evaluation versions that can do the job for you, too. The compresing scheme may vary under a 
different operating system. 
5 A batch file is just a text file which contains a sequence of operating system commands. You can edit it 
with your favorite editing tool (in Windows you could use Notepad, for instance). 

© Francisco Esquembre, August 2002 12

http://java.sun.com/
http://java.sun.com/
http://www.winzip.com/


Easy Java Simulations 3.1. The Manual  
 

 

file Ejs.bat, which you will find in the directory where you installed Ejs and 
change the first line, which reads now 

set JAVAROOT=c:\jdk1.3 

and substitute c:\jdk1.3 for whatever directory you used when installing Java 
SDK. 

If you want to run Ejs in a language other than English (so far, a Spanish 
version is available and a Chinese one is in preparation), you have to use a 
slightly different batch file which will be named Ejs_xx.bat, with xx standing for 
an abbreviation of your language (for instance, the Spanish version is called 
Ejs_es.bat, the Chinese – actually, Taiwanese - version is Ejs_zh.bat. If this is 
the case, whenever you see Ejs.bat written in this manual, you have to read 
your Ejs_xx.bat file. 

And this is all you need, Ejs should be ready to run. However it is advisable 
that you read next section before running Ejs. 

2.3  Organizational information 
 If you inspect the directory where you installed Ejs, you will find a batch file 
Ejs.bat (and perhaps other files of the type Ejs_xx.bat) and two directories: 
data and Simulations. The first directory contains specific data required to run 
Ejs. Unless you are an expert with Java, don’t touch it (and even if you are an 
expert, there is no reason to touch it!). 

The directory Simulations is the one where you will work when running Ejs. It 
contains three directories: _data, _examples and _library6. 

The fact that the three directories in your working directory start with an 
underscore character ‘_’, is Ejs’ particular way of making sure that it will not 
interfere with your future work. When, later on, you create your own 
simulations, you should make sure never to use names that start with an 
underscore character7. 

The first two directories contain some samples simulation files (in _examples) 
included in the distribution and the data they need to run (in _data). They are 
not really neccesary to run Ejs. They are there just for your perusal, so you can 
read, inspect, modify and run these files or even delete the whole directories. 

The case of the _library directory is different. It is needed both to run Ejs and 
the simulations that you will generate with it. So, please don’t ever move, 
rename or delete it. 

                                                           
6 Release note: This is a small change from version 3.0. I decided to put the jar library _ejsLibrary.jar in a 
directory in order to help clean the simulations directory from time to time. There is a second technical 
reason for this change which relates to the possibility of adding new libraries to the distribution in the 
future. 
7 There is however an exception to this rule, which is the case when you want to create a file to be merged 
with other. We will describe this case in detail in part II. 

© Francisco Esquembre, August 2002 13



Easy Java Simulations 3.1. The Manual  
 

 

The typical operation is to run Ejs in your Simulations directory (the default 
starting point) and generate your files and simulations in it. However, you can 
choose to work in any other directory that you want. This can be useful if you 
share the computer or the disk space with another user, for instance. 

If this is the case, then you have to copy8 the _library directory to your new 
working directory and edit the batch file Ejs.bat, which we referred to in the 
previous section. The second line of this batch file reads now 

set EjsDir=Simulations 

You need to change it so that EjsDir points to your new working directory, 
wherever it is.  

This is most likely the last modification that you may want to do on your 
Ejs.bat file. Of course, you may want to have different Ejs.bat files, which use 
different working directories, either for different users or for different tasks.  

Soon, as you create simulations in the Simulations directory, either by your 
own or by trying the examples, this directory will become populated, even 
crowded. You can safely clear this directory by removing any file that you no 
longer need (but be sure that you no longer need it!). Just respect the original 
directories: recall that they start with an underscore character ‘_’. 

2.4  Running Easy Java Simulations 
2.4.1 Launching the program 
It is time to start Ejs! I assume that you installed it successfully in, say, the 
directory c:\Ejs. We want to execute the file Ejs.bat9 which is placed in this 
directory. Under Windows, for instance, you do this either using Windows 
Explorer and double-clicking on this file or with the Start Run option of the 
Windows menu and typing C:\Ejs\Ejs.bat in its Open text field. 

Under Linux of MacOS X you need to open a shell window and execute the 
shell scripts Ejs.linux and Ejs.macosx, respectively, included with the 
distribution. 

After some seconds, during which you will see a progress dialog like this one, 

 

                                                           
8 We suggest copying better than moving. It is a good idea to leave a copy of this library diretory in its 
original place, so that other users can find it. But you could, in principle, delete the original one after the 
copy. 
9 Recall to read’ Ejs_xx.bat if you are using a different language. 

© Francisco Esquembre, August 2002 14



Easy Java Simulations 3.1. The Manual  
 

 

you will get two windows, a black text window with some written lines in it, 
similar to this, 

 

and a second one which is the real Ejs interface10: 

 
 

 

                                                           
10 Release note: The interface is the same as for version 3.0, except that a new icon has been added to the 

right-most end of the toolbat. It is the one that brings in the ‘Options’ dialog: ; its functionality will be 
described later. 

© Francisco Esquembre, August 2002 15



Easy Java Simulations 3.1. The Manual  
 

 

The pointing hand is obviously not part of the interface, I have added it myself, 
in some places along this manual, to help me focus your attention to particular 
points. 

We will ignore the text window (if you want, you can minimize it, but do NOT 
close it!) and will pay attention only to Ejs window. 

On this window, at the top (just where the hand is pointing to), we see three 
radio buttons to the left and a toolbar with some icons to the rightmost end of 
the window. We will use some of these icons soon. 

The three radio buttons are labeled Introduction, Model and View, 
corresponding to the three parts of any simulation created with Ejs, which we 
will describe later.  

These radio buttons work in such a way that only one of them can be selected 
at a given moment. Right now, the Introduction button is selected (which 
makes its circle appear filled). 

Below this line, we see an empty area with an inviting message written using 
the same color as the Introduction label. 

Finally, at the bottom, we see a message area that Ejs will use to display 
messages to you as result of your actions. This message area has an 
independent, different color. 

This color system means that the whole middle panel (everything which has 
the labels in the same color) corresponds to the Introduction top button, and 
you can bet that if you click on any of the other two radio buttons, Model or 
View, the color and the aspect of the middle part of Ejs interface will change. 

And this is enough for now. We will close the section and the chapter just 
testing the installation: reading a sample simulation file and running it. 

© Francisco Esquembre, August 2002 16



Easy Java Simulations 3.1. The Manual  
 

 

2.4.2 Reading a sample simulation 

Please, proceed on your computer as follows. First, click on the  icon in the 
toolbar. A new window (an open file dialog) will appear. 

 

Yes, this is Ejs working directory. Double-click (that is, click twice quickly) 
on the _examples directory. Alternatively, you can click once on _examples 
and then click on the button labeled Open. Both are pointed to by the hand, in 
the picture above. 

The dialog will show what is inside it. 

 

This is the list of files with the extension  .xml (the extension for files generated 
by Ejs) in this directory. 

The number and the names of the sample files that you will actually find in 
your directory may be different from what is shown in this manual. The reason 
is that I may have added new examples from the time I took this picture. 

© Francisco Esquembre, August 2002 17



Easy Java Simulations 3.1. The Manual  
 

 

Select, for instance, the file named EarthAndMoon.xml by double-clicking on 
its name (again, you can click once on its name and then click on the Open 
button).  

Ejs will load the file. 

 

Notice that the Introduction panel (which occupies the middle area) is not 
empty anymore and that the message window displays a message confirming 
the success of the reading process. 

You can click on the different radio buttons and tabs to browse how the file 
describes the simulation. You may not understand everything that what you 
will see, but Ejs seems to be working properly. 

© Francisco Esquembre, August 2002 18



Easy Java Simulations 3.1. The Manual  
 

 

Depending on how I saved the file before distributing it, a separate window 
may also appear, showing the view of the simulation: a black area in space 
with two images, the Earth and the Moon, and a control panel to its right. 

 

Notice that what we have read is the definition of the simulation, but the 
simulation itself is not running. Hence, the images do not move. Notice too 
that the title of the window also tells us that it is a window created by Ejs. The 
final simulation will not display this notice. 

To finally check correct operation, let us actually run the simulation.  

2.4.3 Running the example 

This is done by clicking on the icon .  Please, do it now. After a few 
seconds, Ejs outputs the following reassuring message 

Generating simulation file C:\Ejs\Simulations\EarthAndMoon.java ... Ok! 
Creating jar file C:\Ejs\Simulations\earthAndMoon.jar ... Ok! 
Congratulations! The simulation was generated successfully. 
Trying to run simulation C:\Ejs\Simulations\EarthAndMoon.bat... 

© Francisco Esquembre, August 2002 19



Easy Java Simulations 3.1. The Manual  
 

 

And a new window (with the Earth and the Moon now in motion) appears on 
the screen. 

 

If this is what happened to you, it means that the simulation was successfully 
created. If you look into the directory Simulations, you will see that there are a 
few new files, all of them with a name that starts with either EarthAndMoon or 
earthAndMoon. A description of what these files are will be given in chapter 4.  

If the simulation contained some errors (I would have never included it in my 
_examples directories, to begin with! ☺) then some, perhaps a lot of, 
complaint messages from the compiler would appear in the message area of 
Ejs. We will also learn how to deal with them in this manual.  

If you want, you can play with this simulation, for instance clicking on the 
Reset or Orbits buttons. But for our purposes, it is enough. If everything went 
on for you as described here, you can be sure that your system is properly 
installed. 

If you now close the simulation (just close its window as you close any other 
window in your operating system11), Ejs finally says 

Congratulations! The simulation seems to run alright. 
You can also run the simulation from the generated html page 
 

And this is the end of the chapter. In it, you have learnt how to install Ejs, and 
how to read and run any of the examples that come with the distribution of Ejs. 
It is time now for you to create your first simulation. Please, move on to the 
next chapter! 

                                                           
11 In Windows, by clicking on the right-top button, the one that displays an X. 

© Francisco Esquembre, August 2002 20



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 21

 

3 
3.  A first complete example 

Before we get into details of how to correctly structure a simulation and 
describe all the possibilities of Ejs, we will first create a complete working 
simulation. This way, you will later be able to identify the parts of a simulation 
with respect to what you did in this example. 

This is also a small trick on my side. By letting you create a simulation in the 
first chapters, you will realize that it is really simpler than you expected (with 
the help of Ejs, of course ☺), and you will always tell your colleagues and 
friends that this manual is so wonderful that you were able to create a 
simulation at the very start! 

The example we will build relates to Lissajous’ figures. Do not worry if you 
don’t know very much about them or if you don’t completely understand 
everything you will be doing. The main objective is that you go through the 
full process and get a general perspective of it. 

3.1  The structure of a simulation 
We start with a little bit of theory. Most computer simulations of scientific 
phenomena can be described in terms of the model-control-view paradigm.  

This paradigm states that a simulation is composed of three parts: 

• The model, which describes the phenomenon under study in terms of  
o variables, that hold the different possible states of the 

phenomenon, 
o interrelationships among these variables (corresponding to the 

laws that govern the phenomenon), expressed by computer 
algorithms. 

• The control, which defines certain actions that a user can perform on 
the simulation. 

• The view, which shows a graphical representation of the different states 
that the phenomenon can have. This representation can be done in a 



Easy Java Simulations 3.1. The Manual  
 

 

realistic or schematic form, but in such a way that the user appreciates 
the most relevant aspects of the simulated phenomenon. 

These three parts are deeply interconnected. The model obviously affects the 
view, since a change in the state of the model must be made graphically 
evident to the user. The control affects the model because control actions can 
(and usually do) modify the value of variables of the model. Finally, the view 
affects the model and the control, because the graphical interface can contain 
components that allow the user to modify variables or perform the predefined 
actions. 

In fact, going a step further in the process of simplifying the construction of a 
simulation, Ejs suppresses the control part, merging it half into the view, half 
into the model. Actually, modern computer programs are interactive, which 
means that the user can modify the program’s logic by doing some gestures 
(such as clicking or dragging the mouse, or hitting the keyboard) with the 
computer peripherals on the program’s interface (or view). Thus, the view 
itself can be used to control the simulation.  

On the other hand, if we want this interaction to have certain relevance on the 
program, these gestures on the interface need to trigger actions that affect 
model’s variables. Therefore, the best place to define these actions is in the 
model itself. 

 

Creating a simulation in Ejs consists in defining its model and its view, 
establishing the mutual connections needed for  

a) the correct visualization of the state of the phenomenon being 
simulated and  

b) the appropriate interaction of the user with the view (either to 
modify this state or to perform the actions defined on the model). 

This explicit separation in parts reinforces conceptually the central role of the 
model of a simulation. It is the model which defines what the program 
simulates and how. Notice also that there may be different views for a given 
model. 

It also makes the task of creating a simulation more modular and promotes 
reusability, since the parts can be created independently in time, or by different 
people. 

 

© Francisco Esquembre, August 2002 22



Easy Java Simulations 3.1. The Manual  
 

 

Finally, and though it is not really part of a simulation, it is always convenient 
to include some textual description of what a simulation does, or instructions 
on how to operate with it, specially if we plan to use it with others, students or 
colleagues, for instance. This is the purpose of the extra part, which I have 
placed before the others, that is labeled Introduction.  

This way, we finally obtain the three radio buttons in Ejs interface: 
Introduction, Model and View. 

3.2  Lissajous’ figures 
We are now ready for our example. Let us state what we will simulate.  

When we superpose two simple harmonic movements with perpendicular 
directions, we obtain a planar movement that is described by the equations 

)cos(
cos

22

11

δω
ω

+=
=

tAy
tAx  

where the Ai’s denote the amplitudes of the respective movements (horizontal 
the first one, vertical the second), the ωι’s denote the respective frequencies 
and δ denotes the phase delay between both movements. 

If we supply these two signals to the horizontal and vertical inputs of an 
oscilloscope, its beam will describe a movement that is the result of the 
superposition of both individual movements and that can adopt several nice 
figures, depending on the value of the ratio 

1

2

ω
ω  and of δ.  

These curves are called Lissajous’ figures and are specially nice for the values 

6
5,

5
4,

5
3,

4
3,

3
2,

3
1,

2
1,

1
1

1

2 =
ω
ω  and ππππδ ,

4
3,

2
,

4
,0= . 

When the beam hits the screen of the oscilloscope, a dot is displayed. For a 
single beam to describe a full figure we need a screen that has some kind of 
memory. That is, that gives the dot the occasion to leave a trace. 

Hence, our task consists in building a simulation where two variables x 
and y follow the model described above, and which displays the point (x,y) 
in a screen which has ‘memory’. We will also want to be able to modify the 
values of the frequencies and of the phase delay (the amplitudes only affect the 
relative size, but not the aspect of the curves), thus visualizing several different 
Lissajous’ figures. 

© Francisco Esquembre, August 2002 23



Easy Java Simulations 3.1. The Manual  
 

 

As said in the previous section, to actually build the simulation we need to 
describe its model and build its view. Writing the mathematical formulae that 
relate the variables x and y to the parameters (amplitudes, frequencies, phase 
delay, time) is the model of our simulation. Displaying it in a computer 
window is obviously the view. We will also define in the model some actions 
that will set some combinations of the parameters that produce especially nice 
figures. 

3.3  Writing an introduction 
Let’s start our work! I assume that you installed Ejs successfully and that you 
know how to start it12. Do it now.  

If, on the other hand, Ejs is already running (as a result of a previous session), 
you want to set it to a default state, with no simulation on it. In this case, you 
have to click on the ‘Create a new simulation’ icon . 

If it is not already selected (its button circle should be filled), click on the 
Introduction radio button (the gray one).  

Once in the introduction panel, click on the middle panel that reads ‘Click to 
create a new page’, because this is exactly what we want to do. 

 

As soon as you click on the panel the 
following dialog will appear.  

Because we can create more than one 
introductory pages, we can give each of 
them a different name.  

                                                           
12 If not, read section 2.4  

© Francisco Esquembre, August 2002 24



Easy Java Simulations 3.1. The Manual  
 

 

For the moment, we will simply accept the default name proposed by Ejs for 
this page. So, click on the Ok button. 
The result looks like this 

 

We will now write our initial introduction in this page. However, we can not 
write directly into this blank page because this is a special window that is able 
to display html code, but it only works in read-only mode.  

Html code is a special type of text that includes certain simple tags, or 
extensions, to allow you to control a bit the appearance of what you write 13. 
To let you appreciate the importance and utility of html code I will just 
mention that it is at the heart of most of the pages that you read while 
navigating on the Internet. 

To write our description, we bring-in an editor window. Right-click the mouse 
(that is, click the right button of the mouse) on the blank window. A tiny pop-
up window will appear: 

 

If you select its only option, Edit this page, a new window, this time containing 
an editable text area will appear. 

                                                           
13 If you are not familiar with html code, you can learn the basics in the appendices. 

© Francisco Esquembre, August 2002 25



Easy Java Simulations 3.1. The Manual  
 

 

 

Click on this empty area and type the following, 
This is a simulation that generates <b>Lissajous’figures</b>. 

Notice that, as soon as you start typing, the text area turns its background color 
from white to yellow. This is Ejs’ way of telling you that you have modified 
something, but that this change doesn’t apply yet. In fact, if you noticed it, the 
introduction page is still empty. If you know click on the Ok button 

 

you will see that this window disappears and the introduction page now 
reflects the change. 

 

Congratulations! If you had never done it before, you wrote your first piece of 
html code. Probably you noticed the effect that the tags <b> and </b> had on 
the display of the text they enclosed: it was written in boldface characters. This 

© Francisco Esquembre, August 2002 26



Easy Java Simulations 3.1. The Manual  
 

 

is exactly the standard behavior of most html tags. If you want to go a bit 
further and write a more detailed description, go ahead: edit the page again and 
add some more html code.  

Although we leave the description of other tags to the corresponding 
appendix, you can learn a bit from the examples that come with Ejs. A useful 
tag, that you must definitely know, is the paragraph tag <p>. It does not need 
a matching </p> enclosing companion (but you can write it, if you want) and 
indicates the editor to start a new paragraph. 

3.4  Building the model 
3.4.1 Defining the variables of the model 
We now proceed to the central part of the simulation, its model. And we start 
by defining the variables for it. 

Click on the Model radio button (the red one). Once in the model panel, you 
will see that it has several subpanels, each with its corresponding radio button.  

 

If it is not selected (in the figure it is), select the Variables panel. 

Now, click on the middle empty area to create a new page. 

Again a dialog appears to let you enter a 
name for the new page of variables.  

Type, for instance, Main Variables and 
click Ok (or hit return). 

© Francisco Esquembre, August 2002 27



Easy Java Simulations 3.1. The Manual  
 

 

This is how it should look like. 

 

We will now write our variables. Click on the white text field of the column 
labeled Name (the one the hand is pointing to), and type time. Then click on 
the empty field on the column Value and type 0.0. This tells Ejs that we want 
to create a variable called time of type double with initial value 0.0, which is 
acceptable for our purposes. Since this is a simple variable, I mean that it is not 
an array (this is the Java word for a vector or a matrix), we will leave the 
column Dimension empty.  

You would have noticed that, as soon as you started typing, the table opened a 
second row for subsequent variables. So, our table looks now like this. 

 

I know assume that you got the idea of the mechanism and will let you define 
the double variables deltaTime, amplitude, frequency1, frequency2, 
phaseDelay, x, and y, with initial values 0.05, 30.0, 1.05, 1.0, 0.0, 0.0 and 0.0, 
respectively. 

© Francisco Esquembre, August 2002 28



Easy Java Simulations 3.1. The Manual  
 

 

Our final table of variables should look like this 

 

Though these variables completely determine the state for our model, as we 
will see, we will need some auxiliary variables when we try to configure our 
view to display it. To create them, but still keep a clear separation with our 
state variables, we are going to create a second table of variables (i.e. a new 
page) and will define the new variables there. 

Right-click on the top tab of this page (where the label Main Variables is 
displayed) and a popup menu will appear, 

 

Select the entry labeled Add a new page, and follow the familiar procedure of 
giving the new page a name; use, for instance, Auxiliary Variables. In this new 
page create the variables maximum, minimum and n with values 
amplitude*1.2, -amplitude*1.2 and 150, respectively.  

Yes, you can use a variable in the value field for another variable, as long the 
former is defined before being used  (exactly like we did with amplitude and 

© Francisco Esquembre, August 2002 29



Easy Java Simulations 3.1. The Manual  
 

 
maximum, for instance). 

The variable n will only have integer values, we will therefore define it of 
integer type. For this, click on the field of the column Type next to the name of 
both variables, and a panel with the possible choices will open for you.  

 

Select the int entry.  

The second table of variables looks finally like this. 

 

3.4.2 Initializing the model 
We will need no further initialization for our simple model, since we gave 
initial values to all variables. In some occasions, however, the model requires 
doing some computations to initialize all the variables. In these cases, we 
would use the Initialization subpanel of the Model panel. But as we said, we 
will not use it here and will leave this subpanel empty. 

 

© Francisco Esquembre, August 2002 30



Easy Java Simulations 3.1. The Manual  
 

 

3.4.3 Writing evolution equations 

These equations define how the system evolves as time passes. The Evolution 
panel has a more elaborated interface. 

 

First of all, make sure that the Autoplay check box (the one the lower hand is 
pointing to) is activated (with a tick, as in the picture). This instructs the 
simulation to start as soon as it is run. If it were not, click on the button to 
activate it. 

Now, click on the upper Click to create… area (the upper!) to create a blank 
new page and give it the name Increment the time. In this new page, write the 
equations that make the system evolve.  

In our case, this reduces to the sentence: 
time = time + deltaTime; 

© Francisco Esquembre, August 2002 31



Easy Java Simulations 3.1. The Manual  
 

 

If you think that our model deserves some more lines of code, I need to ask 
you please to be patient, you will see the rest of the model when we write our 
constraint equations. Right now, the panel looks like this. 

 

3.4.4 Writing constraint equations 

If you were wondering where should we write the equations that really define 
the model, that is,  

)cos(
cos

22

11

δω
ω

+=
=

tAy
tAx  

we just got to the point. It is a mistake (a common one, I must add) to write 
them as part of the evolution, because they are really something different. The 
difference is that, while time only changes when the system evolves, x and y 
are always modified according to these constraint equations no matter how and 
why any of the other variables change. This distinction is of special importance 
if we let the user change any of the parameters by direct interaction (something 
that, sooner ot later, we will want to do in an interactive simulation). 

So, go to the Constraints panel, click on the Click to…area, give the new page 
the name Compute the new position and type the equations, which, in Java 
algorithmic dialect turns into the following, 

x = amplitude*Math.cos (frequency1*time); 
y = amplitude*Math.cos (frequency2*time+phaseDelay); 
 

© Francisco Esquembre, August 2002 32



Easy Java Simulations 3.1. The Manual  
 

 

Here is the result. 

 

3.4.5 Saving our work 
Now, we have finished writing our model! At least in a first stage. The Custom 
panel is used when we want to define functions (methods, they are called in 
Java language) that can be reused in any other part of the simulation, or (very 
important!) to define model actions. But we will come back to this in a minute. 

This is a perfect moment to save what we have done so far. It is not that we 
have finished our simulation or that we must save before going on. It is just 
that computers have the bad habit to sometimes stop, or as people usually say 
hang, without obvious reason and without previous notice. Also, not to blame 
only the computer industry, electric power could go off. Whoever is to blame, 
we don’t want to loose our work (your work!), so we will just save from time 
to time. 

For this, click on the  icon. When you do it, you will be prompted with a 
file dialog like this 

 
It is possible, if you started working in this chapter right after testing the 
installation, that this dialog places you in the _examples directory. In this case, 
click on the Home  icon. This will bring you back to your Simulations 
directory. 

© Francisco Esquembre, August 2002 33



Easy Java Simulations 3.1. The Manual  
 

 

You need to provide the name of the file where you want to save your work in 
the File name field and then click on the Save button. Ejs assumes that you use 
the extension xml for this kind of files and will automatically append this 
extension, hence write simply Lissajous and click Save. 

Next time you click on the save icon, Ejs will use the same name, so you will 
not be prompted for a name again.  

Ejs produces a reassuring message at the bottom output window that reads: 
File saved successfully : C:\Ejs\Simulations\Lissajous.xml 

You will also notice that the top banner of Ejs interface now includes the name 
of the file. 

 

3.5  Creating the view 
This part is going to be a bit longer and more complex if you are not familiar 
with computer graphics. I’ll try to explain things in detail. 

In Ejs, a view is created by adding graphical elements that work like building 
blocks which altogether form the interface of the simulation. Because there are 
elements that can host other elements, the result is a tree-like structure. 

Usually, the first branch on this tree is a window element which is the one that 
will appear on the computer screen when we run the simulation and that will 
contain all the other elements of the view14. This window will also be the one 
that will appear on an html page if we run the simulation as an applet (see 
section 4.2 ).  

When we select the View panel, the green one, (please do it now) we will see 
the interface for this panel. 

                                                           
14 There can also be multi-windowed views, of course. Some of the sample simulations have views with 
two windows, actually. But let us keep our example simple, for the moment. 

© Francisco Esquembre, August 2002 34



Easy Java Simulations 3.1. The Manual  
 

 

 

The central area contains two vertical subpanels. The left one is labeled Tree of 
Elements and the right one Elements for the view. 

The panel with the title Tree of Elements displays exactly this, the tree-like 
structure of elements of the view, and is used to select and edit a particular 
element. It initially displays the root of the empty Simulation View. 

The right panel works displays a column of three sets of icons, labeled 
Containers, Basic and Drawables, respectively. These sets group by 
functionality the elements that you can use to build the view for your 
simulation.  

Again, the number of elements that you will actually find in your copy of Ejs 
may be different from what is shown here. The reason is that new elements 
are continuosly been created and added to the standard distribution. 
Alternatively, Ejs may have been configured to display less elements than are 
actually available, for simplicity. 

Although the description of how these components are selected and used will 
be given in section 6.4 , it follows a click and drop scheme, so it should be easy 
(say, not too difficult) to grasp the operation. 

© Francisco Esquembre, August 2002 35



Easy Java Simulations 3.1. The Manual  
 

 

3.5.1 The oscilloscope’s display 

We will create a view that works similarly to an oscilloscope display. To begin 
with, we need an initial window in which we will place all other elements. For 
this first window we choose an element of type Frame. So, please, click on the 
first icon  in the set of Containers at the top (if you place the mouse over it 
and wait for a second, a small caption will appear that reads ‘A top level 
window’).   

When you click on this icon, its background will change color and the cursor 
will change to a magic wand . Then, move to the Tree of Elements panel and 
click (with the magic wand) on the Simulation View node of the tree. 

Ejs understands the trick and is about to
create an element of type Frame as the first 
branch of the tree. But before doing so, it 
asks you the name you want to give to this 
element. 

Type in mainWindow and click Ok. You will notice that a new empty window 
appears on the screen (the size may vary from what is displayed here) 

 

and that the Tree of Elements reflects the change, too.  

 

© Francisco Esquembre, August 2002 36



Easy Java Simulations 3.1. The Manual  
 

 

Notice that the title area of the new window includes the name of the new 
frame, but it also specifies that this is a window created by Ejs. The text that 
appears on this title can be customized as we will see, but you will always be 
able to distinguish between a window created by Ejs and the corresponding 
window of a running simulation because the latter does not display the ‘(Ejs 
window)’ suffix. 

 

Now, we want to add to this frame an element that is able to contain display 
elements. The one we need is of the type DrawingPanel, has the icon  and 
the caption that appears over it reads ‘A 2D container for drawables’.  

Click on it, to make it the active element, 
then click with the magic wand on the 
recently created element mainWindow 
(either on the branch of the tree with this 
name or in the real window), and give the 
name screen to the new element that will be 
created. 

Now, something new happens! Before the 
element is actually created, we are prompted 
with the following dialog that asks us where to 
place the new element. This requires a bit of 
explanation. 

The frame element we created, mainWindow, is a container element which (by 
default) can hold up to five children elements, each at one of the positions it 
calls north, south, east, west and center - you can easily guess where it will 
place each of them. Our screen element will be right at the center, so accept the 
center option and click Ok. 

Now, the tree of elements reflects the presence of a new element as a 
subbranch of mainWindow,  

 

© Francisco Esquembre, August 2002 37



Easy Java Simulations 3.1. The Manual  
 

 

and mainWindow seems to change its background color to a particular type of 
blue. In fact, what has this new color is not mainWindow, but the newly 
created element screen. 

This background color is the default for elements of the same type as our 
screen (drawing panels). But this can be customized. If we right-click on any 
element of the Tree of Elements, a popup menu will appear. 

 

If we select the first option, Properties, a new dialog will show. 

 

This corresponds to the edition window of this element. Each element behaves 
in a predetermined way which is basically given by the type of element that it 
is (that is, all frames behave in a manner typical to frames, buttons behave like 
buttons, etc.) However, elements have a set of properties that can be changed 
to customize it to better fit our needs. 

© Francisco Esquembre, August 2002 38



Easy Java Simulations 3.1. The Manual  
 

 

All edition dialogs look pretty much the same. They only change in the 
number and particular properties for which they offer customization for the 
element. Part of the task of mastering the art of building views consists in 
getting familiarized with what types of element exist, what can they do for you 
and what properties can be edited. Besides learning by looking at the examples 
provided with Ejs, there is no other way than going to the reference page for 
every element in the appendices to learn about a given element. 

I will guide you in this task throughout this chapter. What we want to do is to 
go to the field labeled Minimum X, click on the icon  to its right, select 
minimum from the list of model variables that appear, and click Ok. 

 

The edition dialog will reflect the choice in the corresponding text field. 

 
An alternative way of achieving the same result would have been to type 
directly minimum in this field. But this is also more prone to typing mistakes. 

Now, repeat the procedure to give the value minimum to the property 
MinimumY and the value maximum to the properties Maximum X and 
Maximum Y. What we are doing is linking the properties of our screen that 
determine the region of the plane where it can draw, to the model’s variables 
minimum and maximum (which we computed to make sure that Lissajous’s 
figures would fit in their range). 

This is all the customization we need from our drawing panel screen. You can 
close the edition dialog for it (by clicking on the ‘close’ button at the upper-
right corner of the window). 

© Francisco Esquembre, August 2002 39



Easy Java Simulations 3.1. The Manual  
 

 

 

Now we need to actually draw on our 
screen. For this, we pick a display element 
(situated on the lower set of elements) of 
the type Trace, the one with the icon . Its 
caption reads A sequence of points. 

Add one of these, with the name trace, to the drawing panel screen (click on 
the icon to select it and then click with the magic wand on screen). Bring-in 
the edition dialog for the new element trace and on it, 

 

link the following properties with the given model variables: 

• property Points with variable n, 
• property X with variable x,  
• property Y with variable y, 

and leave the rest as it was. The result looks like this. 

 

This setting means that this element will add a new point (x,y) (the z coordinate 
is unnecesary for our purposes and can be left empty) to the data set every time 
the evolution advances one step, up to a maximum of n entries. After this, it 
will discard an old point every time it adds a new one. In other words, the 
memory of this trace will be able to remember a maximum of n points. 

© Francisco Esquembre, August 2002 40



Easy Java Simulations 3.1. The Manual  
 

 

 

And this is the end of our view, at least in a very first stage. We will have to 
come back to it later, when we want to add some interactivity, but this is a 
good moment to see something running! 

 
A methodological remark. You may be thinking that, since n equals to 150, we 
could have saved the effort of declaring a variable and all this, and could have 
just used the value 150, instead.  
 
This is true, but it is also a short-sighted approach, since later on we may 
prefer to change this value to 200, for instance, if we discover that more 
complex Lissajous’ figures require more time to leave the proper trace (which 
is true, by the way). If we followed this second approach we would need to 
look all through the simulation to find where we used the value and then 
change the 150 to 200, which is not only tedious but prone to error. Specially if 
we used the value in more than one place. 
 
Using our original approach we only need to change the value of n, which can 
be even done in run-time by the final user (if we provide her with a way of 
doing so, of course). 

3.6  Running the simulation 
We have therefore created the introduction, the model and the view for our 
simulation. 

We can now run it. This is done using the icon . 
Click on it and this is what you should see, but in 
motion.  

If this is the case, congratulations, you completed 
your first simulation successfully! 

3.6.1 Gallery of horrors (debugging) 
It might well be, gentle reader, that at this very moment you are a bit frustrated 
because you didn’t get this window at all! What happened, I would bet my 
kingdom on this, is that you made a minor typing mistake when copying what 
I asked you to type all along the chapter and now the compiler is complaining 
a bit, or most likely, a lot.  

Do not worry very much about how many and how strange these error 
messages are. Feel yourself welcomed to a club with many members and be 
ready to look and find what your first error was. Many often, one single typing 
error causes a lot of error messages in cascade. It is therefore important to go to 

© Francisco Esquembre, August 2002 41



Easy Java Simulations 3.1. The Manual  
 

 

the top of the message area (at the lower part of Ejs interface), look for the 
very first error and try to correct it. 

It is impossible for me to guess what was your error and give a solution for it, 
but instead, I can provide some examples of typical errors. 

T Y P I C A L  E R R O R  N U M B E R  1 .  

Imagine that you typed 
time = time + delta Time; 

instead of  
time = time + deltaTime; 

when writing the code for the evolution page in section 3.4.3. See the 
difference? Yes, the space between delta and Time. If you did so and tried to 
run, you got the following error message: 

Generating simulation file C:\Ejs\Simulations\Lissajous.java ... 
C:\Ejs\Simulations\Lissajous.java:65: Invalid type expression. 
    time = time + delta Time;  // > Model.Evolution.Increment the time:1 
         ^ 
1 error 
Compilation produced an error! 

More important than understanding what the message Invalid type expression, 
means, is to be able to locate where the error is produced. Then, you can look 
at this place and try to figure out what you did wrong. In this case, Ejs is 
telling you that the error was produced in  

// > Model.Evolution.Increment the time:1. 

That is (in compressed jargon), line number 1 of the (model’s evolution) page 
called Increment the time. Now, you have to recall that this is the name we 
gave to the evolution page. Go there, fix the error (delete the extra space) and 
try to run again. 

T Y P I C A L  E R R O R  N U M B E R  2 .  

This one consists in believing that the case is not important in the name of the 
variables… It is.  

If, in the same place as before, you typed 
time = time + deltatime; 

instead of  
time = time + deltaTime; 

You got the error message: 
Generating simulation file C:\Ejs\Simulations\Lissajous.java ... 
C:\Ejs\Simulations\Lissajous.java:65: Undefined variable: deltatime 
    time = time + deltatime;  // > Model.Evolution.Increment the time:1 

© Francisco Esquembre, August 2002 42



Easy Java Simulations 3.1. The Manual  
 

 
                  ^ 
1 error 
Compilation produced an error! 

This time, the description of the error is a bit clearer (you defined a variable 
called deltaTime, not deltatime) and the location follows the same pattern as 
above. 

T Y P I C A L  E R R O R  N U M B E R  3 .  

Imagine that you forgot to type the semicolon at the end of one line of the 
constraint page. That is, you typed 

x = amplitude*Math.cos (frequency1*time) 
y = amplitude*Math.cos (frequency2*time+phaseDelay); 

instead of  
x = amplitude*Math.cos (frequency1*time); 
y = amplitude*Math.cos (frequency2*time+phaseDelay); 

Just one semicolon produces the strange reaction: 
Generating simulation file C:\Ejs\Simulations\Lissajous.java ... 
C:\Ejs\Simulations\Lissajous.java:69: Invalid type expression. 
    x = amplitude*Math.cos (frequency1*time)  // > Model.Constraints.Compute 
the new position:1 
      ^ 
1 error 
Compilation produced an error! 

Again, ignore the error messages and look where it is placed. Go to line 1 of 
Compute the new position in  (Model.Constraints) and type the semicolon. 

Sometimes, error messages appear in cascade. A simple one produces a 
cascade of several others. For this reason, once more, my recommendation is 
that you try to correct the mistakes one after the other, starting with the first 
one, and trying to run after each correction. 

TWO SPECIAL TYPICAL ERRORS . 

A first typical error, which I have come across more than once, is to create the 
model and the view correctly, but to make a mistake while connecting them, or 
even forget to link them at all.  

© Francisco Esquembre, August 2002 43



Easy Java Simulations 3.1. The Manual  
 

 

If, for instance, you forget to establish the links 

 

or if you typed, incorrectly 

 

(again, a difference in the case) you will not get any error message, but you 
won’t obtain anything in the simulation, either.  

Do not think the simulation is doing nothing. It is working hard running the 
model, increasing time by deltaTime and computing the x and y values as fast 
as it can. But we ‘forgot’ to tell it to move the beam to the new position, or 
used an incorrect link! 

For good or for bad, the view can have its own variables (which don’t even 
need to be declared beforehand), so it will assume that X is a new variable and 
since the model doesn’t modify it, it will display nothing. 

To avoid this type of error, I strongly recommend using the pick-up button to 
the right of the input field, whenever possible. 

The second typical error is to forget to check the Autoplay check box on the 
Evolution panel of the model. Then, the simulation is correct but, this time, it is 
actually doing nothing because it has not started to run. You would click on  
and get a static, disappointing simulation. 

© Francisco Esquembre, August 2002 44



Easy Java Simulations 3.1. The Manual  
 

 

3.7  Adding interactivity 
3.7.1 Defining custom actions 
As we said, we will define some actions that will help us set the value of the 
variables that produce nice Lissajous’ figures. For this, we go back to the main 
Model panel and make use of its Custom subpanel, which you have to select 
now. The interface we obtain is very similar to the one you are familiar with, 
but with a small difference. 

Click on the Click to … area to create a new empty page and give it the name 
Draw a circle. You will see that (in contrast with what happened in previous 
panels) the text area doesn’t appear empty. 

 

The reason is that pages in the Custom panel allow us to create any kind of 
Java method, and this requires us to specify what we want (which in turn 
forces us to know a little bit about how Java methods are defined). We shall 
not get into details here, but this basically means that we need to give it a 
name, a return type and declare its accessibility. Optionally, we can declare the 
method to accept input parameters.  

In our case, the accessibility is going to be kept public, the return type void (so 
we accept the proposed values for both), the name we change to setCircle (the 
proposed name15 is too long for my taste) and we leave the parameter list 
empty ( ) as it is now. 
We now type in the body of the method (between the curly braces { and }) the 
following sentences, which produce a circular Lissajous figure, 

 frequency1 = 1.0; 
 frequency2 = 1.0; 
 phaseDelay = Math.PI/2.0; 

(Math.PI is Java’s special way of referring to the constant number 
π=3.1415…).  

                                                           
15 which matches the name of the page – with spaces replaced by underscores, since method names can 
not have spaces. 

© Francisco Esquembre, August 2002 45



Easy Java Simulations 3.1. The Manual  
 

 

The result is 

 
This custom method is ready. Now, create two more with the following names 
and codes. 

 
This one gives a figure which looks like a horizontal 8. 

 
And this one a figure which looks (more or less) like a heart. 

These are all the actions that we need. And this also finishes our model. Again, 
this is a good moment to save our work (click on the  icon). 

3.7.2 Adding interface buttons for our actions 
To finish our simulation, we will now create three buttons on the simulation’s 
view that will help us trigger the actions just defined. For this we will first 
create a container panel that will hold them. 

© Francisco Esquembre, August 2002 46



Easy Java Simulations 3.1. The Manual  
 

 

Go back now to the View main panel. The element we are interested in is the 
set of Containers and has the icon . If you place the mouse over it and wait 
for a second, a small caption will appear that reads ‘A basic container panel’.  

Click on it to select it and hit with the magic wand the mainWindow entry of 
the Tree of Components window. This time, accept the proposed name panel 
for the new element and select west as the position for this panel. 

Ejs now reflects, in the Tree of Components window, the component we have 
just created, that is, panel. 

 

However, our display, the oscilloscope’s window, will not have changed at all. 
This is because, although the new panel is there, it is still empty, so it doesn’t 
ask mainWindow for space. 

Before proceeding, just for organizational 
reasons, although we have created panel later 
that screen, we want it to be the first child of 
our mainWindow.  

There is actually no real reason for doing this 
(in this case), but this lets me show you the 
feature of reorganizing the hierarchy of 
children ☺. 

For this, bring-in panel’s popup menu and 
click on Move up. 

As a result of this action, both panel and 
screen will have switched position. 

 

Now, we will create a second panel as child 
of panel. Since the panel element is already 
selected, click with the magic wand on 
panel, accept the proposed name panel2
and select north as position for it. 

© Francisco Esquembre, August 2002 47



Easy Java Simulations 3.1. The Manual  
 

 

You have now created a second panel and the Tree of Components looks like 
this. 

 

However, the oscilloscope still looks exactly the same. To make it finally 
change, we will create three buttons on panel2. However, we will first change 
the way the parent panel2 will accommodate the new children. 

Bring in the edition panel for the properties of panel2 (right-click on panel2 
and select Properties). 

 

Click on the  icon to the right of the text field for 
the property labeled Layout (which reads now 
border) and you will obtain a specialized dialog. 

This dialog lets you choose the layout policy for the 
container panel. This is the policy, or scheme, that 
the container will use to allocate space for its 
children. 

In it, choose the option labeled GridLayout (the one 
the hand is pointing to) and click Ok. This 
corresponds to a grid with (as the default says) one 
single column. 

Now, we can add the three buttons we need.  

© Francisco Esquembre, August 2002 48



Easy Java Simulations 3.1. The Manual  
 

 

In the panel with the menu of Elements for the view, select the element with 
the following icon , the caption would read A button for actions. 

 

Click on it and be ready to click on panel2 three times to create three buttons.  

You will notice that this time, panel2 does not ask you for a position for the 
new children, but that the new buttons are just created (well, after giving them 
a name; use the names Circle, Eight and Heart). This is because its layout 
imposes the position of any new child according to its ‘order of birth’. 

Please create the three buttons now. 

Now, the oscilloscope display has changed (but see next note!) Here are both 
the Tree of Components and the display that you should see. 

  
If the panel with the buttons doesn’t show up, you may need to resize 
imperceptibly our mainWindow. Sometimes, only when a container gets 
resized does it assign its children the space they need. 

To resize the window, do as with any other window on your screen, click on 
any of the corners and drag the mouse a little bit while holding the mouse 
button down. 

S T I L L  A N O T H E R  T Y P I C A L  E R R O R . 

Perhaps, but only perhaps, you clicked in the wrong window and got a button 
where you did not want it to be. For instance, imagine that you clicked on 
panel when you wanted to click on panel2. 

In this case, the best thing to do is to remove the newly created  button and 
create it again. 

© Francisco Esquembre, August 2002 49



Easy Java Simulations 3.1. The Manual  
 

 

To remove an existing component, bring in the element popup menu in the 
Tree of Components, and use the last entry in this menu. The picture reflects 
this menu for the first button. 

 

To make our view look better, you may need to resize our mainWindow to 
make the screen element a bit bigger and more or less square sized. 

Finally, we will associate to the buttons the corresponding actions. We do this 
using the edition dialog for each of the buttons. Right-click on each of them 
and click on the edit button to the right of the input field of the property labeled 
Action.  

 

© Francisco Esquembre, August 2002 50



Easy Java Simulations 3.1. The Manual  
 

 

Next figure shows the window that appears with the list of available actions. 

   

The actions written in blue color correspond to some predefined actions, such 
as starting -_play()- or stopping -_pause()- the simulation. In red (the color for 
model items) we find the actions we defined in our model. 

The parentheses indicate that our action will correspond to a Java method in 
the generated Java file. Although this does not matter to us, it is important that 
you respect the parentheses. 

Select setCircle() for the button Circle, setEight() for the button Eight and 
setHeart() for the button Heart. 

This means that when the simulation runs, if the user clicks on any of the 
buttons (say in button Circle), the code we wrote in  the corresponding action 
(in setCircle( ) ) will be executed. This is exactly what we want. 

Let us summarize what we have done in this section. We have extended the 
view to provide three more buttons. For this, we first created some panels that 
we needed to place the buttons in the right place. 

These button display meaningful labels (since they use by default their name 
and we gave them meaningful names) and we have associated our control 
actions to them, so that when we click on them (while running the simulation) 
they will execute the code we wrote in the corresponding actions. 

Our simulation is finished and we are ready to run it! 

© Francisco Esquembre, August 2002 51



Easy Java Simulations 3.1. The Manual  
 

 

3.8  Running the complete simulation 
Run the simulation again, by clicking 
on the  icon and you get your 
complete simulation!  

If you click on the three buttons you’ll 
get the following Lissajous’ figures: 

 

  

3.9  Adding some more interactivity 
Now that we have finished duty, let us continue a little bit, just for the joy of it! 
Or, if you prefer being more serious, take this as the exercise section of this 
chapter. 

We want to add to our simulation the possibility to directly enter the values of 
frequency1, frequency2 and phaseDelay, which will let the user produce all 
possible Lissajous’ figures. 

For this, and assuming you already gained some familiarity with Ejs interface, 
go to the Containers set of the View panel and create a new container panel 
under panel (make sure you select panel and not panel2), using south as 
position. Give the new panel a one-column grid Layout (the same as panel2), 

In this new panel, which is called, most likely, panel3, create now three 
elements of the class NumberField which belongs to the group Basic, whose 
icon is . Accept the proposed names for them. 

© Francisco Esquembre, August 2002 52



Easy Java Simulations 3.1. The Manual  
 

 

 

Now, edit the property called Format of each of the new NumberField 
elements to read Freq1 = 0.0, Freq2 = 0.0 and Phase = 0.00, respectively. 
These 0.0 and 0.00 are not values, but a way of formatting numerical values.  

To learn more about this, you will have to read the reference page for 
NumberField, in the appendices of this manual. 

For each of the fields, link also the property called Variable to frequency1, 
frequency2 and phaseDelay, respectively. 

Similarly to the links we established before, these new links mean that each 
NumberField element will display the actual value of the corresponding 
variable. But also that, conversely, if we type a new value in the field, the 
model variable will accept it as its new value. 

If you now run the simulation (don’t forget to save it, too, just in case), you 
will read the values of the three variables, frequency1, frequency2 and 
phaseDelay, in the corresponding fields and you will also be able to enter a 
new value by clicking of the Field elements, typing a new value and hitting 
enter. 

For instance, if you use the values 
3.0, 5.0 and 0.0, you will obtain the 
figure to the right.  

 

 

Finally, you can also play with values of frequencies that are not integers, and 
you will get curves with change in time. Try, for instance, the values 1.005, 2.0 
and 0.79. 

But obviously, I can not reproduce changing curves here. Now you need a real 
computer to continue exploring Lissajous’ figures! 

© Francisco Esquembre, August 2002 53



Easy Java Simulations 3.1. The Manual  
 

 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 54



 

4 
4.  Using your simulation 

Now that you have created your first simulation, you may be so fond of it that 
you actually want to use it in your classroom, or perhaps even publish it on the 
Internet! You’ll find instructions on how to do this in this chapter. 

Simulations created with Ejs can be run in three different forms. The first one 
is by using Ejs itself, as you have already done yourself. The second is by 
running the generated simulation as an applet using any of the most popular 
Web browsers. The third and final form is to run the generated simulation as 
an independent Java application. 

The first option is the one that would make me happier, since it would help 
spread the use of Ejs. It has a very important advantage: your user can learn 
how you actually simulated a given phenomenon. This has, in my opinion, a 
great pedagogical added-value. It also has a disadvantage, however: the user 
needs to have Ejs installed in her computer and needs to know how to use it. 
Although you and I agree that Ejs is a wonderful tool, perhaps you don’t want 
all your users to learn to use it just to be able to run a given simulation.  

Fortunately, simulations created with Ejs are, once generated, independent of 
it. Hence, in this case, the second option is the one I usually recommend: 
running the simulation as a Java applet. 

A Java applet is a special form of application that is designed to be run within a 
Web browser. The browser loads a type of file, called an html file16, that 
includes a special tag (or instruction) which tells the browser to run the 
required applet within its own window. This html file may reside either in your 
local disk or in an internet location, served to you by a Web server. 

I also recommend this option because the html file allows you to wrap the 
simulation with explanatory text that will introduce to the student the 

                                                           
16 html stands for Hyper Text Markup Language. 

© Francisco Esquembre, August 2002 55



Easy Java Simulations 3.1. The Manual  
 

 

phenomenon being simulated, and also lets you prepare a simplified control of 
the simulation from the Web page using JavaScript 17.  

Although you already created a bit of html code when we wrote the 
Introduction part for our simulation (and Ejs will use this), you may want to 
create a more complete and sophisticated html page with the help of one of the 
popular html editors, which can help you achieve a much more professional 
result. 

 

The third option, running the simulation as a stand-alone Java application, is 
only recommended when you want to run a simulation that writes data to your 
disk. As it is explained in part II, simulations created with Ejs can read data 
from the disk and also through the Internet, from a Web server, no matter in 
which of the three ways they are executed. However, in order to create this 
data, the simulation must write it to disk and, for security reasons, Java applets 
can not write to the local disk. In this case, you have to run the simulation as a 
Java application. 

 

Distributing (i.e. giving to others) a simulation to be run within Ejs is 
straightforward, you only need to give your simulation (the .xml) file away. In 
our example, you would distribute the file called Lissajous.xml. Your user 
would need to know how to start Ejs, load this file in it and run it, as explained 
in section 2.4 . 

If your simulation needs some data to run properly, like an image file, for 
instance, you need to distribute this data too. 
 

This chapter is devoted to explain how to run simulations in the latter two 
ways, as well as to instruct you how to distribute your simulations 
independently of Ejs, that is, how to give them to other people so that they can 
also run them even if they don’t have or don’t want to use Ejs. 

This is a good moment to say that you are free to distribute as many copies as 
you want of any simulation you create with Ejs with no cost for you and no 
copyright limitation. Only if you distribute Ejs itself you need to accept Ejs 
license limitations, which, on the other hand, are very low demanding: just 
respect my name and copyright notices both in Ejs and in this manual. 
Obvious, isn’t it? ☺. 

                                                           
17 Describing JavaScript and html format is clearly out of the scope of this manual, we will very briefly 
describe what we need for our purposes. You can surely find an appropriate book on any of these subjects 
in your nearest technical library. 

© Francisco Esquembre, August 2002 56



Easy Java Simulations 3.1. The Manual  
 

 

4.1  What happens when you run a simulation 
I need to describe briefly what happens when you run a simulation with Ejs, 
just before the simulation view actually appears on the screen. I will illustrate 
the process using the example of our previous chapter.  

If you gave, as suggested, the application the name Lissajous, you will find  in 
your Ejs Simulations directory, after you run the simulation for the first time, 
the following files (if you don’t find one or more of these files, don’t worry 
very much and wait until you read next subsection): 

• Lissajous.xml. This is the simulation file itself. It contains all the work 
we did in the previous chapter stored in a special format called xml. This 
is certainly the most precious file of all the family of Lissajous files in 
this directory. Do not delete unless you want to lose your work! 

It is possible, and very acceptable, that you save this file in a 
different directory. This doesn’t affect Ejs at all and might be even 
be convenient for organizational purposes, after you have created 
several dozen simulations ☺. In this case, this file won’t appear in 
Ejs Simulations directory 

• Lissajous.java. This is the generated Java source file. Recall that Ejs 
falls into the category of code-generators: it takes all the pieces of 
information that you provided through its interface and builds a Java 
program out of it. 

There is a long way to go from one place to the other, but this is taken 
care of automagically by Ejs. This generated Java file uncovers some of  
my programming secrets, and might be of use for you if you want to 
learn how I did it, or if you are an experienced Java programmer and 
want to modify it directly. If you are not interested in it, you can also 
instruct Ejs to remove this file when it doesn’t need it any more. See 
next subsection for this. 

• lissajous.jar. This is the output of the Java compiler when it processes 
the file Lissajous.java. Well,… not really. Compilation can produce a 
lot of small files. What I have done is to instruct Ejs to put everything in 
one single file and then compress it, so that to facilitate distribution. 
This file is the final result of this process. 

• Lissajous.html. This is a sample html file that will help you run your 
simulation as an applet, and is the central piece of next section. 
Depending on the configuration of your options for Ejs (again, read 
next subsection, please), and how many pages you wrote in the 
Introduction part of your simulation, you may also find more hml files 
for this simulation, all of them will start with the prefix Lissajous. 

© Francisco Esquembre, August 2002 57



Easy Java Simulations 3.1. The Manual  
 

 

• Lissajous.bat. Finally, this is the file that you need to run your 
simulation as an independent Java application and will be discussed in 
section 4.3 . 

You must also find the directory _library  in this directory and, probably, there 
are other files in this directory created as result of running some sample 
simulations.  

Recall, as instructed in section 2.3 , that you can only use as Ejs home 
directory a directory that holds a copy of the directory  _library. This directory 
is also needed when you want to distribute your simulation about Lissajous’s 
figures, as described in section 4.4 .  

4.1.1 Ejs configuration options 
If you look at your Simulations directory and can’t find some of these files, this 
is not necessarily due to a malfunction in your copy of Ejs . Ejs has some 
configuration options that can be modified to instruct it not to generate files 
that you are not going to need. To check these options, click on the options 
icon which you will find in the right-most upper row of icons: 

 

You will get the options editor, you 
can see to the right. In it, you see 
the options that Ejs offers for 
customization, exactly with the 
values that they had the last time 
Ejs was run. The options you see in 
the picture are, in fact, the options I 
use myself. 

You can decide where Ejs  main 
window should appear: at the center 
of your screen, at the upper-left 
corner, or wherever it was the last 
time you used it. 

This is useful if you prefer Ejs to appear always at a given position. In this 
case, just place Ejs main window there and select the Current position option. 

© Francisco Esquembre, August 2002 58



Easy Java Simulations 3.1. The Manual  
 

 

You can also select the font Ejs will use as default every time it is run. This 
produces the same resut as changing the font for the current session (which is 
done using the font icon  in the main toolbar,) if only this option has a more 
permanent effect: next time you run Ejs it will also use the font you select 
here. 

Proceeding downwards, you can instruct Ejs how it should create html pages 
for your simulation,and whether it should keep the generated java file or not. 
This certainly affects what was described in the previous section. 

Ejs can generate html files either following closely the way you structured 
your Introduction part for the simulation (that is, each introduction page in a 
separate html file), or putting everything in one single file. You can even tell 
Ejs to generate no html at all! I use this option myself when I am going to use 
and distribute my simulations as Ejs files. This way, my Simulations directory 
doesn’t get crowded by html files I am not actually going to use. For the same 
reason, I also use the Remove Java file…option. 

Finally, the last option offers you to display (or not) hidden pages. As we will 
learn in part II of this manual, hidden pages are pages that form part of a given 
simulation, but that the creator of it, prefers you not too see.  

Or at least, not to see them at a first stage, since, of course, by checking this 
option you can always see this page, whether the author wants it or not.  

This is useful when you, as author, are preparing simulations for your students 
and you want them to concentrate their attention in the relevant parts of the 
simulation, ignoring other parts that are either routinary or that don’t contribute 
too much to the core of the task. Hence, you could hide these other parts. 

4.2  Running your simulation as an applet 
Let’s go back to the main purpose of this chapter. 

As said above, the best way of using your generated simulation is to run it as a 
Java applet by opening an html page that includes it. 

Whenever you successfully run a simulation using Ejs, a sample such page is 
created for you. You can find this file (perhaps together with other auxiliary 
html pages) in your working directory. It has exactly the same name of your 
simulation, but has a different suffix, .html. 

You can run the simulation just by loading this file (load precisely this one, not 
any of the other auxiliary html files) into your favorite Web browser. There is, 
however, an important remark. Ejs and the simulations it generates, use Java 

© Francisco Esquembre, August 2002 59



Easy Java Simulations 3.1. The Manual  
 

 

components of a special (and advanced) graphical family, called Swing. This 
family requires that your browser supports Java 2. 

Unfortunately, not all browsers come Java 2 enabled ‘out of the factory’. 
Some require that you install an update of what is called Java plug-in. The 
latest version I have tested thoroughly is 1.3.1 and you can download it at 
Sun’s site under the link http://java.sun.com/getjava/download.html.  

I have also tested version 1.4 and it works fine most of the times.Usually, it 
even runs faster. Unfortunately it also produces ‘unexpected results’ (not to 
call it bugs) from time to time. I therefore recommend version 1.3.1. 

4.2.1 What is in the html file 
In this release, Ejs can generate a number of html pages that combine to 
provide a nice set of web pages for your simulation, according to the 
information we placed in the Introduction part of Ejs. From all of them, we 
describe here only the one that holds the simulation. This would be (for our 
Lissajous simulation) the file LissajousSimulation.html.  

However, if your configuration options instruct Ejs to put all the html code in 
one single file, you will see the code that follows forming part of the one and 
only Lissajous.html. 

This file has three different parts, which I list separately. 

The first part is a standard header that all html files need. 
<html> 
  <head> 
    <title> Home page for Lissajous</title> 
  </head> 
  <body> 

This declares the file as an html file, gives it a title and opens the section 
<body>, where the real content is. 

The second part is the central piece of the page. It contains the tags for a 
separator and for the inclusion of the simulation within the page. 

The simulation's view should appear right under this line.<br> 
<applet code="org.colos.ejs.LauncherApplet.class" 
        codebase="." archive="_library/_ejsLibrary.jar,lissajous.jar" 
        name="Lissajous"  id="Lissajous" 
        simulation="lissajous.Lissajous" 
        capture="mainWindow" width="338" height="239"> 
</applet> 

Finally, the last part includes the html code needed to include some JavaScript 
buttons that control the simulation and the closing of the page. 

<!--- Finally the JavaScript buttons ---> 
<br><hr width="100%" size="2"><br> 
<p>You can control it using JavaScript. For example, using buttons:</p> 
<p> 
<input type="BUTTON" value="Play"  

© Francisco Esquembre, August 2002 60

http://java.sun.com/getjava/download.html


Easy Java Simulations 3.1. The Manual  
 

 
          onclick="document.Lissajous._play();";> 
<input type="BUTTON" value="Pause"     
          onclick="document.Lissajous._pause();";> 
<input type="BUTTON" value="Reset"        
          onclick="document.Lissajous._reset();";> 
<input type="BUTTON" value="Step"     
          onclick="document.Lissajous._step();";> 
<input type="BUTTON" value="Slow"        
          onclick="document.Lissajous._setFPS(1);";> 
<input type="BUTTON" value="Fast"        
          onclick="document.Lissajous._setFPS(10);";> 
<input type="BUTTON" value="Faster"        
          onclick="document.Lissajous._setFPS(1000);";> 
</body> 
</html> 

I have written in bold font above the words that depend on the actual generated 
simulation. In the example above, of course, this includes the word Lissajous, 
but also the name of our main window and its size. 

The special applet tag is made of the lines 
<applet code="org.colos.ejs.LauncherApplet.class" 
        codebase="." archive="_ library/_ejsLibrary.jar,lissajous.jar" 
        name="Lissajous"  id="Lissajous" 
        simulation="lissajous.Lissajous" 
        capture="mainWindow" width="338" height="239"> 
</applet> 

It states that the browser should load the applet LauncherApplet which will, in 
turn try to run the simulation lissajous.Lissajous that we have created. This 
LauncherApplet is a utility class, included in the file _ejsLibrary.jar (which is 
in the _library directory) that handles all the internal tricks needed to run your 
simulation within an html page.  

It also states that the applet should be created with a size of 338 times 239 
pixels, because this is the size we used (to be more precise, that I used when 
writing this manual) for the main window of our simulation. 

You see in the second line of this tag construction that the applet also needs to 
load the archive _library/_ejsLibrary.jar which must be in the codebase 
directory ‘.’ (that is, the same directory in which the html file is located). This 
is the reason why the _library  directory must be there! 

The page that we created in the Introduction part of Ejs will be included in a 
separate html page. If we create more than one of these pages, then we will 
also get more html pages, each of which will appear in a frame created by the 
central html file, the one you should read in your Web browser, which is called 
Lissajous.html. 

© Francisco Esquembre, August 2002 61



Easy Java Simulations 3.1. The Manual  
 

 

4.2.2 JavaScript control of the simulation 

The final part of the html listed above shows how the simulation can be 
controlled using JavaScript commands.  

JavaScript is a scripting language that is understood by most Web browsers 
and that allows basic programming within html pages. We shall not describe 
JavaScript here, but only mention that JavaScript can be used to perform 
actions on our simulation. This use of JavaScript provides in fact a second way 
of controlling the simulation besides the simulation interface itself. 

JavaScript can be used to: 

• Execute any of the predefined control routines: _play, _pause, etc. (see 
part II) 

• Execute any of the public actions that we defined in our model 
• Set the value of any of the variables of the model 

The procedure for this is always the same. You have to include an input button 
like follows: 

<input type="BUTTON" value="Pause"       
           onclick="document.Lissajous._pause();";> 

This one uses the _pause( ) predefined method that will stop the simulation. 
Now, if you click on the button labeled Pause that will appear in your browser, 
the simulation will stop. 

To use any other method, just replace the _pause() part with any other valid 
method of our simulation. For custom model methods, you need to specify the 
prefix model. For instance, if you want to execute the method called setCircle 
that we defined in the model part of our Lissajous simulation, substitute 
_pause() with _model.setCircle()18. 

If the method you want to call accepts variables, like _setDelay (int delay), or 
_readState(String filename), just write the parameters within the parentheses. 
However, methods that accept parameters of type String, must enclose them in 
inverted commas, instead of quotes. Like in 

<input type="BUTTON" value="Nice Figure"  
          onclick="document.Lissajous._setVariables 
            ('frequency1=3.0; frequency2=5.0; phaseDelay=0.0');";> 

By the way, _setVariables is a very useful predefined method of any Ejs 
generated simulation that can be used to set the value of any variable of it. In 
this example, it is used to set the value of  frequency1 to 3.0, of  frequency2 to 
5.0 and of phaseDelay to 0.0. Of course, like in this example, your model must 
                                                           
18 At the time of this writing, and for a reason I ignore, Internet Explorer doesn’t seem to deal with this 
type of methods properly, while other browsers, like Netscape and Mozilla, do. 

© Francisco Esquembre, August 2002 62



Easy Java Simulations 3.1. The Manual  
 

 

have variables with the corresponding names. Notice that sentences of the 
form variable=value are separated by semicolons. 

4.2.3 Adding your own html text 

If you know how to modify an html file, you can go ahead and personalize the 
sample html file according to your needs. For instance, by including a 
background image, or configuring the page with frames,… 

4.3  Running your simulation as an 
application 

The third way in which you can use your simulation is as a stand alone Java 
application.  

However, you must notice that running Java programs requires a Java virtual 
machine present in your system. Browsers incorporate them (either by default 
or after installing a plug-in), but if you want to run the simulation as an 
application you must obtain and install Java run time environment. You can 
find it in Sun’s site http://java.sun.com.  

Notice, however, that if (according to section 2.2 ) you installed Java SDK in 
order to be able to run Ejs, then the run time environment is already present in 
your system. 

 

If you want to run your simulation as an application, then the file we are 
interested in is Lissajous.bat. If we inspect it19, we find the following simple 
content. 

@echo off 
c:\jdk1.3\jre\bin\java -classpath "_library/_ejsLibrary.jar;lissajous.jar"    lissajous.Lissajous 

The first line is not so important, it is just instructing the operating system to 
work in silent mode. That is, it should not repeat next line, just execute it. 

The second line is the important one. It is calling Java run-time engine (which 
in my system is placed in the directory c:\jdk1.3\jre\bin) and telling it to 
execute the class lissajous.Lissajous which lives in the lissajous.jar archive 
file. It also tells it to use (for its own internal purposes) the archive file 
_libray/_ejsLibrary.jar. Again, the _library directory must be in the same 
directory as the batch file for the simulation to run. 

                                                           
19 We are illustrating the batch Windows file. 

© Francisco Esquembre, August 2002 63

http://java.sun.com/


Easy Java Simulations 3.1. The Manual  
 

 

If you run this file20, an empty operating system window would open and the 
simulation will run in a second window. 

Also, if you know how your operating system works, you can edit this file to 
suit your needs, like placing the files in a different directory, start the operating 
system window in minimized mode, etc. 

 

4.4  Distribution of simulations 
As I said above, simulations created with Ejs are independent of it, if only they 
need the library that includes the graphic components you used when creating 
the view and other internal files necessary for operation.  

These are not part of the standard Java graphic library but have been created, 
or adapted specifically to Ejs with the goal of making them useful to visualize 
scientific phenomena and data with a unified simple interface of use. Included 
in this library is also a subset of the Open Source Physics Tools created by 
Wolfgang Christian (see http://www.opensourcephysics.org).  

However, distributing your application is very easy. You just provide the user 
with the generated files described in this chapter plus the library directory 
_library. If your application uses its own data (like an image file) you’ll need 
to provide this data too. 

If you are distributing your simulation using a CD-ROM, perhaps even using 
floppies, just copy the files corresponding to your application in the 
distribution media and add a copy of the _library directory, too. 

If you are using a Web server to publish your simulations through a network, 
maybe the Internet, place the generated files in an accessible directory on the 
server and a copy of the _library directory in the same place as your 
simulations. 

Of course, if you are an expert in publishing applets on the Internet, you can 
always improve this setup. But these simple instructions will work. 

Once more, I need to recall that anyone using your simulations from the 
internet will require a Java 2 enabled browser, as specified in section 4.2 . 

                                                           
20 In Windows just double-click on it. 

© Francisco Esquembre, August 2002 64

http://www.opensourcephysics.org/


Easy Java Simulations 3.1. The Manual  
 

 

 

 

PART II. Detailed description 
 

© Francisco Esquembre, August 2002 65



Easy Java Simulations 3.1. The Manual  
 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 66



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 67

 

5 
5.  Building models with Ejs 

5.1  Definition of a model 
We create the model of a phenomenon when we define what its relevant 
magnitudes are, set their values at an initial moment and establish the rules that 
govern how these magnitudes change. 

We use the word magnitude to refer both to state variables (values that 
describe the phenomenon) and to parameters (values used by the governing 
rules). When we write our simulation, we will refer to magnitudes as variables.  

A variable can hold a value that changes as the simulation runs or one that does 
not. In other words, it can represent a constant or variable magnitude; but this 
doesn’t make much difference to us now21. 

Hence, the state of a model is given by the value of its variables x1, x2, x3, ..., xn.  
Usually, to help understand a model, variables are given meaningful names in 
concrete models (such as velocity, acceleration, number of individuals of a 
species, concentration of a chemical element, etc…). Since our exposition is 
general, we assume that they all have the same name with different indexes. 

The state of a model at a given moment (the values of its variables) can change 
due to two reasons: 

• the inner dynamics of the simulation, which we call evolution, and 

• the influence of external agents; i. e. the direct interaction of the user 
of the simulation.  

In the second case, it is possible that the user changes one or more variables 
that affect others which are dependent on them. We then say that there are 
constraints among these variables. 

                                                           
21 It is possible that one magnitude, considered in principle constant, changes later; either because we 
change the laws of the model, or because the user interacts to directly modify the magnitude. Hence, the 
term variable turns out to be finally appropriated. 



Easy Java Simulations 3.1. The Manual  
 

 

Both processes of change are ruled by equations that describe the laws under 
which the evolution takes place or the interdependence of the magnitudes, 
transcribing them into mathematical formulas. 

Therefore, to specify the model of a simulation we need to set the initial 
state, the evolution equations, and the constraints equations.  

5.1.1 The initial state of a model 

First of all, we must define the variables of our model. In many cases, this is a 
crucial process from which a good or bad simulation can follow (choosing the 
right reference system, magnitudes that simplify the formulas…). Hence, this 
is our very first step to create a model: 

Step 1 : Define the variables 

When the variables of the model are chosen, setting the initial state consists in 
given them the right values. 

Step 2 : Initialize the variables 

5.1.2 Evolution and constraint equations 
Using the terminology stated above, the system can evolve autonomously from 
the current state x1, x2, x3, ..., xn to a new one x1*, x2*, x3*, ..., xn*, simulating 
the passing of time (which, by the way, can or cannot be one of our variables).  

We call the equations ruling this transition, evolution equations, which can be 
written as a system of one or more equations of the form  

xi
* = fi(x1, x2, ..., xi, ..., xn) 

Step 3  : Write evolution equations 

Sometimes these laws have a direct formulation, as in the case of discrete 
systems of the form xn+1 = f(xn). In occasions, they derive from the 
discretization of differential equations. 

Simulating the evolution of a model in time consists in computing, from 
the current state of the model x1, x2, x3, ..., xn, the new values x1*, x2*, x3*, 
..., xn*; take these as the new state of the model, and continuously repeat 
this process for as long as the simulation runs. 

© Francisco Esquembre, August 2002 68



Easy Java Simulations 3.1. The Manual  
 

 

Besides the equations associated to the autonomous evolution of the system, 
we must also describe its reaction to changes forced by external agents. As said 
before, to changes imposed directly by the user. 

The change of a given variable, caused by the user, may affect others that are 
related to it. We call these interrelationships, constraints, and are expressed by 
one or more equations of the form 

xi = gi(x1, x2, ..., xi-1, xi+1, ..., xn) 

where a variable can only appear at one side of the equation. 

Step 4  : Write constraint equations 

If, at any moment, a variable on the right-hand side of a constraint changes, the 
equation is evaluated and the variable on the left-hand side modified. Since this 
happens within the same instant of time, evolution equations are not evaluated. 

It is possible to have models with only evolution equations, models with only 
constraints and models with both. In this last case, if an external agent changes 
a variable, only constraint equations are evaluated, but if a step of the 
simulation takes place, then evolution equations are evaluated and, 
immediately after, constraint equations. 

When writing a model, it is convenient to clearly identify which equations 
correspond to evolution and which to constraints. A useful criterion (though 
perhaps not always valid) is to examine the equation we use to compute the 
new value of a variable. If this value depends on the current value of the same 
variable, then this is an evolution equation. If it doesn’t, then it is a constraint. 

A typical example is a model described by an ordinary differential equation of 
the form x’(t)= f(t,x(t)), for which we know a closed-form solution x=sol(t). In 
this case, we may be tempted to write evolution equations in the form 

t* = t + dt; 
x* =sol(t+dt); 

when the evolution equation really reduces to  
t* = t + dt; 

and the second is in fact a constraint: 
x = sol(t); 

The difference is significant, because if the user modifies the value of t, this 
immediately implies a change of the current value of x, even if no step of the 
evolution is taken. This would not happen if we wrote the equations in the first 
form. 

© Francisco Esquembre, August 2002 69



Easy Java Simulations 3.1. The Manual  
 

 

We have a different situation if we do not know a closed-form solution of the 
differential equation. Then, we must try a solution based on a numerical 
method, and evolution equations take the form 

t* = t + dt; 
x*= computation(t,x,dt); 

where the computational formula depends on the differential equation and on 
the numerical method we use. Now, if the user changes t, it is not possible to 
compute the new value of x without going through all intermediate evolution 
steps.  

Instead, we can interpret that what the user really wants is to set new initial 
conditions for the equations, changing x(tcurrent) = xcurrent to  x(tnew) = xcurrent. 

5.1.3 Running the model 
Once these four steps have been completed, we have finished creating the 
model. If we run the simulation, 

1. Variables are created and their values are set to those indicated in the 
initialization step. 

2. Constraint equations are evaluated (since the initial value of some 
variables may depend on the initial values of other variables). 

Now, the model is in its initial state and the simulation waits for an evolution 
step or for the user to interact with it. 

3. In the first case, evolution equations are evaluated and, immediately 
after, constraint equations. We then reach the new state of the model 
in a new instant of time. 

4. In the second case, when the user changes a variable, constraint 
equations are evaluated and we obtain a new state of the model 
within the same instant of time. 

 

© Francisco Esquembre, August 2002 70



Easy Java Simulations 3.1. The Manual  
 

 

5.2  Ejs interface for the model 
Corresponding to the four steps described above, the part of the interface of 
Ejs dedicated to the implementation of the model has four radio buttons, one 
for each step, and each with its own central panel.  

 
 
 
 

 

Yes, I know; you actually see five! But the last one, labeled Custom, is just a 
place for you to write custom Java methods (also called sometimes functions 
or subroutines) which can help you write more elegant programs. It is also 
used to create control actions for the simulation as we will describe in section 
5.7 . 

The interface for the panels corresponding to each of the radio buttons is rather 
similar, only the one for the evolution is a bit more complex.  

They all show initially an empty area with a message inviting you to create a 
new page for variables or code.  

© Francisco Esquembre, August 2002 71



Easy Java Simulations 3.1. The Manual  
 

 

 If you click on this panel, you are 
prompted to provide a name for this page. 

Though Ejs proposes you a generic name 
for the new page, I recommend that you use 
descriptive names, so that anyone who 
reads your simulation can figure out what 
this page contains. 

Once you type a name for the new page and click Ok (or hit return) a new 
empty page will be created. Because there can be more than one pages in each 
of the areas, the pages are organized using a tab system.  

 
 
 
 

 

 

This tab system is very convenient when you have a complex model, so that 
you can organize your variables or code in separate pages, each of them 
holding variables or pieces of code that have a similar function. Obviously, 
simple simulations can be described with just one page per part. 

You can create a second page, copy, rename, remove, disable and hide this 
page using a popup menu that appears when you click the right button of the 
mouse over the top of the page (anywhere in the gray area between the five 
radio buttons and the white text area of the action’s code).  

 

© Francisco Esquembre, August 2002 72



Easy Java Simulations 3.1. The Manual  
 

 

Also, when you already have more than one page, you can use the options in 
this menu to reorganize the tabs changing the order of the pages. 

Enabling and disabling requires a bit of explanation. When you are creating a 
model it may well be that you want to test several algorithms to solve a given 
problem and to see which one works best. Of course, you can always try each 
of them by deleting the previous and writing the new one. But if you want to 
come back to the one you just deleted, you would have to delete the new one 
and retype the older. And this once and again, until you decide…  

Not with Ejs! What you can do instead is to write both algorithms for once in 
different pages and enable and disable the pages in turn to test either one or the 
other. Disabled pages are easily recognizable because they append a (D) suffix 
to their tabs name and can not be edited. 

 

Finally, the option to show and hide a page allows you to keep kind of ‘secret’ 
pages of code. This may be useful for pedagogical means when you are 
creating complete simulations for your students, but you want them to proceed 
throught them little by little, so that they can grasp the main ideas more easily. 

To this end, you could place some not-so-relevant code in hidden pages and 
configure Ejs so that it doesn’t show the hidden pages22. The simulation would 
keep full functionality (hidden pages are invisible, but active) and still show 
your students a simplified part of the underlying model.  

Later, when the students are ready for it, you can always tell them to switch 
Ejs to show hidden pages so that they can see how you created the simulation 
in all its details. 

Hidden pages (when made visible) display an (H) sufix to their tabs names. 

 

The remainder of this chapter is devoted to describe how to use each of the 
panels to complete the steps of section 5.1 for the creation of the model. 

5.3  Declaring variables 
This corresponds to step 1 above. Variables are easy to define. We only need 
to give them a unique valid name (see subsection 5.3.3 below), specify the type 
of the variable (I explain this in a moment) and, in case it is a vector or a 
matrix, indicate its dimension. I’ll refer to variables with dimension as arrays. 
                                                           
22 See section 4.1.1. 

© Francisco Esquembre, August 2002 73



Easy Java Simulations 3.1. The Manual  
 

 

5.3.1 Types of variables 

Even when in mathematical formulas, variables are usually described using 
real numbers (occasionally, complex numbers), when we write a computer 
program we distinguish among several types of variables, depending on the 
use we make of the variables and on the computer memory needed to store 
them. 

For instance, variables that only take integer values need less memory and can 
be handled faster in computations, since most computer systems implement 
optimized routines for integer arithmetic.  

We may also want to use variables of type boolean, which can only take two 
values: true or false, of type char to store characters and of type String to store 
text. 

In our case, Java implements the following types of basic variables: boolean, 
byte, char, short, int, long, float, double and String. Where byte, short, int and 
long are used for integers and float and double for real numbers.  

However, except in cases where it is absolutely essential to make the 
computations always with the smaller possible types (to save space or optimize 
execution speed to its limits) we can just choose to use the standard types in 
each category.  

This will be our approach and Ejs will only make use of variables of the types 
boolean, int, double and String. 

 

Advanced topic: variables of type Object 

Besides these basic types, Java uses a new type called Object as the base type 
for a whole family of advanced variables. Java is an Object-Oriented 
programming language and, although it is out of the scope of this manual to 
describe what this fully means, this allows Java programmers to create a 
wonderful and extensive world of new variable constructions, called classes 
that implement all kinds of functionality. 

Ejs wants to be an easy tool for a precise task, that of creating model-focused 
scientific simulations. However, as a door for advanced programmers to use 
and also to allow us, simple mortals, to create nice visualization tricks (for 
instance, changing colors dynamically), Ejs introduces in this version the 
possibility of declaring a new type of variables, Object variables. It is however 

© Francisco Esquembre, August 2002 74



Easy Java Simulations 3.1. The Manual  
 

 

the responsibility of the user to use object variables appropriately. We refer the 
reader to the examples to appreciate valid, simple uses of this. 

5.3.2 Creating variables 

Every page of the Variables panel holds a copy of the editor of variables, 
which adopts the form of a table. 

 

We add a variable to a table by typing the name, providing an initial value, 
selecting the type and, if the new variable is an array, indicating the dimension 
of it. We can also type a descriptive comment for each variable in the lower 
Comment field. This comment has no other use but to provide a short 
explanation of the role of this variable in the model, in case another person 
reads our model. 

Ejs accepts both simple or multidimensional variables. If we leave the field at 
the column Dimension empty, then the variable created is a simple one. A non-
empty dimension consists in one or more occurrences of matching square 
brackets with an integer value in between. 

For instance, if we write [50] in the Dimension field of a variable, this means 
that we want to declare (what is called in Mathematics) a vector with 50 
coordinates. If we write [10][100], this creates a matrix with 10 rows, each of 
them with 100 elements. 

© Francisco Esquembre, August 2002 75



Easy Java Simulations 3.1. The Manual  
 

 

When a variable is created, an empty line is automatically added to the table, 
thus providing space for more variables. We can also insert a variable between 
two existing ones, by calling a popup menu, clicking the right button of the 
mouse. This menu is also used to remove variables. 

 

The field under the column header Value is also optional. Although there is a 
dedicated panel for initialization of a simulation, sometimes initializing a 
variable reduces to giving to it a constant value or the result of a simple 
expression. In this case, it is not necessary to create an initialization page (as 
we will learn to do in the next section) for so little, you can just type the 
variable value in the Value column. If you use this feature for an array, all its 
elements will get the same initial value. 

Leaving this field empty will always imply a default initialization to 0 for 
numeric variables, to false for booleans, to an empty string “” for Strings and 
to null for Objects. 

For example, the definition of the following variables:  

• isVisible : boolean, simple, initialized to true. 

• text : String, simple, initially set to “Hello” 23. 

• n : int, simple, initialized to 10. 

• time, x and y : double, simple, initialized to 0.0, cos(π/2) and 
sin(π/2), respectively. 

• posX and posY : array of n doubles, all of its elements 
initialized to x and y, respectively. 

• valZ: bi-dimensional array of n × 100 doubles.   
• myColor : Object, simple, initialized to red color. 

appears in the editor as follows: 

                                                           
23 Notice the inverted commas, constant strings require them. 

© Francisco Esquembre, August 2002 76



Easy Java Simulations 3.1. The Manual  
 

 

 

As this example shows, it is possible to use a variable in the definition of 
another, as long as the first one is defined and initialized before it is used. 
Please notice also the correct way of using the mathematical cosine and sine  
functions (and the constant π) in Java. Notice too how I initialized the Object 
myColor to the color red.  

This uses one of the (literally) hundreds Java classes that exist, and which I 
have learnt to use by reading some Java books. The bad news is that this 
manual is not the place to learn Java. The good news is that, in my opinion, 
this class, called java.awt.Color is perhaps the only one that really adds a 
feature that we do need for our purposes, that of dynamically changing the 
color of our view elements. 

You can learn a bit more about some interesting Java classes, including 
java.awt.Color, in the appendices. 

 

When, later on, we want to use a simple variable in a Java expression, we only 
need to write its name. When using an array, however, we must also indicate 
which element of the array we are referring to. We do this by writing the name 
of the array followed by the index between square brackets, where the first 
element has zero index and the last element has an index equal to the size of 
the array minus one.  

It is a common (and dangerous!) mistake to refer to the first element of the 
array posX, in the example above, as posX[1] and to the last one as posX[n] 
or posX[10]. The correct way would be posX[0] and posX[n-1] or pos[9], 
respectively. 

Correct examples of use of variables in Java code include the following: 
isVisible= false; t = 3.5; posX[0] = 1.0; posY[9] = 4.2; valZ[9][99] = 5.0; 

© Francisco Esquembre, August 2002 77



Easy Java Simulations 3.1. The Manual  
 

 
while the next are incorrect: 

x[0] = 0.1; posX[10] = 1.0; posY[0][0] = 1.0; valZ[99][9] = 5.0; 

5.3.3 Naming conventions 

Along the process of creating a simulation we’ll need to provide names for 
several elements of it: for pages in different parts of the simulation, for 
variables, custom methods or actions of the model, and for elements of the 
view. 

The names for pages have no special use but to help you identify the different 
parts of a simulation, so you can use any name for any page, with no 
restrictions. You could even use the same name for different pages. 

But the names for the other elements must follow some basic rules, in order to 
avoid conflicts among these names as well as to make the simulation easier to 
understand for other people. We will follow the following naming 
conventions: 

1. The name of every variable, method or view element must be unique 
in the whole simulation. 

2. Names are formed by a conjunction of alphanumerical characters 
(from a to z, from A to Z, and from 0 to 9) with no limitation in 
length.  

3. The first character must always be an alphabetic character. For  
variables and methods the first letter will be chosen in lowercase 
(that is, from a to z). For view elements the first character can be 
written uppercase. 

4. It is recommended to use descriptive names. To this end, several 
words can be put together (with no blank spaces in between) to form 
a name. In this case, it is better to start each new word with an 
uppercase letter. 

5. Names starting with an underscore character ‘_’ are forbidden, since 
Ejs uses them for its own variables and methods. 

 

Finally, the following words are reserved Ejs or Java keywords; hence, they 
can not be used as names. 

boolean, break, byte, case, catch, char, continue, default, do, double, else, 
float,  for, getSimulation, getView, if, initialize, instanceof, int, long, Object, 
reset, return, short, step, String, switch, synchronized, throws, try, update, 
while.  

© Francisco Esquembre, August 2002 78



Easy Java Simulations 3.1. The Manual  
 

 

5.4  Initializating the model 
As we have seen, we can initialize the variables to constant values or to simple 
expressions when we define them. However, more complex initializations are 
often needed. For instance, if we want to give different values to the elements 
of an array, or assign to a variable a value that has to be computed using an 
elaborated mathematical algorithm.  

To do this, we use the second of the panels of the model, the one labeled 
Initialization. Here, we will create the pages of Java code needed to initialize 
the simulation24. The code in these pages will be executed once, and only once, 
at the beginning of the simulation, in the same order as their tabs show. 

As an example, a page that initialized the arrays posX and posY that we defined 
in subsection 5.3.2, with equally spaced values from the intervals (-2,2) and 
(0,1), respectively, would look like the following. 

 

The initialization of a model is, in principle, that simple. You can add as many 
pages as you want with the appropriate Java code on it. You need to remember 
that, if there are more than one initialization page, these are executed exactly in 
the same order they appear in this panel, from left to right. You can, however, 
change this order by using the corresponding options in the popup menu for 
this panel. 

The text area where you write the code has also its own popup menu. This 
contains the basic editing capabilities to undo, redo, cut, copy, paste and select 
all text.  

                                                           
24 You can find a reminder of the basic Java you need in order to write computer algorithms in the 
appendices. 

© Francisco Esquembre, August 2002 79



Easy Java Simulations 3.1. The Manual  
 

 

 

You can also select part of the text by (left) clicking and dragging the mouse 
over the desired piece of text. Although drag and drop is not supported (at least 
not yet) you can use the standard acceleration shortcuts for cut (Control-X), 
copy (Control-C) and paste (Control-V). The figure above shows the process 
of selecting a piece of code and copying using the popup menu. 

5.5  Evolution equations 
The interface for this panel is a bit more elaborated.  

 

To the left of the card, we see a slider that modifies a value called Frames per 
second, followed by a non-editable text field labeled FPS and a checkbox 
which reads Autoplay. We will explain the utility of these controls in a minute.  

© Francisco Esquembre, August 2002 80



Easy Java Simulations 3.1. The Manual  
 

 

Unlike previous panels, the main central part of the panel is now divided in 
two subpanels. The upper one invites us to create a new page, the lower one 
invites us to create a new ordinary differential equation (or ODE). This 
corresponds to the fact that the evolution of a model can be described in Ejs in 
two different, complementary ways. 

In principle, the implementation of evolution equations consists simply in 
transcribing them into sentences of Java code. Sometimes, however, evolution 
equations derive from the numerical resolution of systems of ordinary 
differential equations, a task that implies writing complex code.  

Although you might prefer to write the code for solving ODE by yourself, Ejs 
includes the possibility of introducing these equations in a dedicated editor and 
then, it automatically generates the associated code to solve the equations 
using the most popular solving algorithms. 

Hence, we would click on the upper message to start with a blank area for Java 
code, and on the lower one to start with an ODE editor. Later, we can always 
add both, pages of code or of ODE, using the usual popup menu. 

5.5.1 Setting the execution environment 
But let us first describe what the left controls mean. We start from the bottom.  

By default, when a simulation runs, the evolution is 
started automatically. This is what the tick that you see 
on the Autoplay checkbox means. But, sometimes, you 
may want to change this default behavior. 

For instance, suppose that you want the user to manipulate the simulation in 
order to complete certain tasks before the evolution starts. Then, you need to 
uncheck the Autoplay checkbox and the simulation will show up but will not 
start the evolution. Of course, in this case, you will need to provide your user 
with a way of starting the evolution, once he or she completes the required 
task. 

The standard way for this is to include a button in the view with its Action  
property associated to the predefined method _ play() (see chapter 6. ) 

Moving upwards from the Autoplay checkbox, we see the controls for the 
speed of the simulation. Usually, you might expect the computer to run the 
simulation as fast as it can, repeating evolution steps over and over with no 
interruption nor delay. However, because modern computers are becoming 
faster and faster, it is sometimes necessary to force them to wait a little 
between every two successive evolution steps. Otherwise the evolution is so 
fast that we cannot appreciate what is happening.  

© Francisco Esquembre, August 2002 81



Easy Java Simulations 3.1. The Manual  
 

 

This is the purpose of the Frames per second (FPS) control and field. The FPS 
value represents the approximate number of evolution steps that the simulation 
should complete in one second. The minimum is 1 and the biggest numerical 
value is 24. There is still a special non-numerical value, which reads MAX, 
which means ‘as fast as you can’. This is the default value. 

5.5.2 Writing equations 

Let us now go back to our equations. If, as said before your evolution 
equations can be described using regular Java code (and one can build really 
sophisticated models with it!) you will just add pages of code in the same way, 
and with the same utilities as you did for your initialization pages. If you have 
ODE that you want to solve by yourself, you can also proceed as you learnt in 
the previous section. 

The only think I need to describe is the editor for ODE, in case you want to use 
it to help you solve (numerically) your ODE. This editor is displayed in the 
next picture. 

 

In order to illustrate the use of the editor with a practical example, I will use 
the same sample variables that we defined in section 5.3 . We will define two 
systems of ODE using these variables. The first one will be the second order 
differential equation 0)()('' =+ timextimex , which, using  y as an auxiliary 
variable turns into  

© Francisco Esquembre, August 2002 82



Easy Java Simulations 3.1. The Manual  
 

 





−=
=

)()('
)()('

timextimey
timeytimex  

Of course we could easily find the analytical solution to be of the form 
. But we will ignore this possibility now 

(or loose our example!). 
)sin()cos()( timeBtimeAtimex +=

The second will be a similar system of ODE but for each of the elements of the 
arrays posX and posY. That is, in vector notation, 





−=
=

)()('
)()('

timetime
timetime

posXposY
posYposX  

This possibility of defining ODE for arrays is a very powerful one, since it 
allows you to generate simulations with a large number of individual variables 
with a relatively small effort.  

5.5.3 Declaring an ODE 

The first thing we have to do is to choose the independent variable for the 
ODE system. In our set of sample variables, this will be time. 

We can do this in two different forms. The first one is to simply type time in 
the field labeled Independent Variable. The second is to click in the  icon to 
the right of this field. 

 

If we click on it, a dialog will show up, 
listing all the variables of the model that 
can be used in this field.  

We can then select the variable time and 
click Ok. The Independent Variable field 
will reflect the change.  

© Francisco Esquembre, August 2002 83



Easy Java Simulations 3.1. The Manual  
 

 

 
You will also notice that the State column of the table below has changed and 
reads not ‘d / d time’. It is ready to display your differential equation. 

The second thing we need to do is to specify the increment for the independent 
variable in each evolution step. This corresponds to the step that we will use in 
the numerical method and can be either a variable from our list or a constant 
value. In the first case, we can use any of the methods described above to 
indicate our choice. If we use a constant value, we just simply type it in the 
field. 

For our example, we will use the constant value 0.1. So we just type it. 

 

Finally, we must write the differential equations of the system. This is done 
selecting in a row of the table, for each of the equations in the system, the state 
variable that we want to derivate with respect to our independent variable (in 
the column with the header State) and, to its right (in the column with the 
header Rate), the value of the corresponding derivative. 

Again, to indicate each state we can simply type in the variable name (in the 
space between the first ‘d ‘ and the ‘/ d time’) or (recommended) select it from 
a list of suitable model variables. This list is shown in a dialog that appears 
when we select the option Select a state variable in the popup menu for a 
given row. 

 

© Francisco Esquembre, August 2002 84



Easy Java Simulations 3.1. The Manual  
 

 

This time, however, there is a difference, 
since Ejs allows that the state is either a 
simple or a uni-dimensional double 
variable.  

Hence, all variables with type double, both 
simple and uni-dimensional, will be 
shown in this dialog. 

 

The expression for the derivative (or rate) of this state variable must be typed 
in explicitly. Just click on the corresponding field and type the expression. 
Notice that this expression can contain any of the variables of the model, not 
just those shown on the list above. 

In our case, we select x and y as state variables and type y and –x as rates, 
respectively. This corresponds to the second order differential equation 





−=
=

)()('
)()('

timextimey
timeytimex  

The result looks like this. 

 

 

IMPORTANT NOTICE 

If the description of the equation is a bit complicated, it is very common (and 
useful) to write in the right-hand side of the table the call to a Java method that 
we define previously in the Custom panel of the model (as described in section 
5.7 ). This keeps the ODE easier to read.  

When we do so, however, it is very important to make this expression ‘self-
contained’. By this I mean that, if the rate expression depends on any of the 
state variables of this systems of ODE (as it usually does), then these states 
must be included as parameters of the custom function. The technical reason 
for this relies in the way some numerical algorithms use intermediate states to 
improve the accuracy of the computation. 

 

© Francisco Esquembre, August 2002 85



Easy Java Simulations 3.1. The Manual  
 

 

If we wanted to do so for our equations, the safest way to do it would be the 
following: 

 

declaring in the Custom part (you may need to wait until you read section 5.7 
to get a full understanding of what is described here) the methods 

private double f1 (double a, double b) { return b; } 
private double f2 (double a, double b) { return -a; } 
 
Notes:  
1. Since the name of the parameters are generic, I like to use different 

names than that of the real variables, just to avoid confusion.  
2. These methods can be declared private since they are going to be used 

only by the model itself. 
 

We now add to the system the equations for the second ODE 





−=
=

)()('
)()('

timetime
timetime

posXposY
posYposX  

Since the independent variable is the same, we can (in fact, should25) use the 
same page we already created. The procedure is similar to the one we used for 
the case of simple variables. 

The only difference in describing the second ODE is that it applies to all the 
elements of the array. Hence, we have to indicate the rate for each of these 
elements, and this rate usually depends on the index of the element. 

                                                           
25 If we used a second page with the same independent variable and increment, the time would be 
incremented by 0.1 twice in each evolution step, once per page. And this could affect the accuracy of the 
numerical algorithms for solving the ODE. 

© Francisco Esquembre, August 2002 86



Easy Java Simulations 3.1. The Manual  
 

 

For this reason, if we select a unidimensional state variable, Ejs will add an 
index (between square brackets) to the name of the variable.  

 

By default this index is i but you can change it to any other variable, even if 
you have not defined it in the tables of variables. Then, when writing the rates, 
you should use the same index in the expression, if the rate depends on it.  

In our example, the final result should look like this. 

 

Continuing the notice above, if we want to use custom methods the right way 
would be, in this case, the following: 

 

adding to the Custom part the methods 
private double f3 (int i, double[] A, double[] B) { return B[i]; } 
private double f4 (int i, double[] A, double[] B) { return -A[i]; } 
 

5.6  Writing constraint equations 
Creating pages for constraint equations presents an interface identical to the 
Initialization panel, though their effect are different according to what is 
described in subsection 5.1.3.  

© Francisco Esquembre, August 2002 87



Easy Java Simulations 3.1. The Manual  
 

 

We only need to write the code that transcribes the constraint equations into 
sentences of Java language. 

5.7  Custom methods 
The last radio button of the Model part of the interface of Ejs is labeled 
Custom. Its purpose is to let you define your own methods (functions or 
subroutines) so that you can use them anywhere else in the simulation. 

The interface and purpose is similar to that if the initialization and constraint 
pages,  

 

but have two important differences. 

The first one is that methods created in Custom pages have to be explicitly 
called by you in any other part. Unlike Initialization pages, which are called at 
start up, Evolution pages, which are invoked at every evolution step and 
Constraint pages, called whenever the model state changes, Custom pages are 
not called by the simulation environment. You have to explicitly include a call 
to the methods you define here in any of the other part of the simulation. 

The second difference is that you have a greater degree of freedom to create 
methods in these pages. More precisely, while other pages create internal Java 
methods that can not be called directly, and that can not be called with 
parameters, in this ocassion you can create methods that accept parameters and 
return a value (thus behaving like functions).  

This offers you more freedom, yes, but also requests from you that you know 
how to declare valid Java methods. I’ll describe briefly how to do this in the 
next subsection. 

© Francisco Esquembre, August 2002 88



Easy Java Simulations 3.1. The Manual  
 

 

5.7.1 Creating your own methods 

When you create a new page, Ejs gives you a hint by providing an initial basic 
skeleton. 

 

Creating a Java method requires that you give it a name, a return type and that 
you declare its accessibility. Optionally, we can also declare the method to 
accept input parameters. 

The term ‘accessibility’ refers to whom can use the method. If you declare it 
public, any other part of the simulation, or even utilities outside the simulation 
(like JavaScript, see chapter 4), can use it. In general, it doesn’t hurt to make 
all your methods public.  

If you declare it private, however, then nobody but the model can use it. The 
only reason I see to declare methods private is to keep the list of methods 
offered to view elements (for linking with their action properties, see next 
chapter) shorter. 

The return type applies to methods that return a value as result of their internal 
operations. If a method doesn’t need to return a value, it can be declared void. 
If it does, then the last sentence of the method’s logic must be a return 
statement. 

Finally, parameters consist in a comma-separated list of pairs type name that 
declare variables that will be used in the method internal body (the code we 
write between the curly braces). If a method accepts parameters, then it must 
be called with values that match the type of the declared list of  parameters (see 
the example below). If a method needs no parameters, it can be declared with 
an empty list of parameters. 

You can change anything in the basic declaration proposed by Ejs: the 
accessibility, the return type, the parameter list (which is initially empty) and 
even the name of the method, since the name you give to the tab is taken 
initially to provide a name for your method but afterwards is only used to 
decorate the tab. 

You can also declare more than one method in each page. 

© Francisco Esquembre, August 2002 89



Easy Java Simulations 3.1. The Manual  
 

 

The typical use of Custom pages is to define methods that include algorithms 
that are rather elaborated and that, if written in the place where they are used, 
could make reading (and understanding) the simulation’s logic more difficult.  

A second typical use is to write algorithms that are going to be used in more 
than one place of the simulation and with different values or parameters. This 
improves reusability of your own code. 

We will illustrate the use of this panel by declaring a method that computes the 
distance between two points and then use this method in the constraint pages.  

The distance between two points in the plane, (x1,y1) and (x2,y2), is given by 
the formula ( ) ( )22 2121))2,2(),1,1(( yyxxyxyxd −+−= .  

To turn this formula into a valid Java method we change the code of our initial 
method Lib_Page() to read, 

 

Notice that we have changed the return type to double, the name to something 
meaningful according to the purpose of the method,  and the parameter list to 
accept the coordinates of our two points as input. 

Now, we can use the newly created method in a constraint page 

 

to keep valZ updated with the value of the distances of each point 
(posX[i],posY[i]) to the others26. 

                                                           
26 Yes, I know this code is not very elegant, nor efficient: valZ has a lot of unused space and the 
computation is redundant since the distance from one point to another and back are the same. But the 
intention of the example is just to illustrate the use of Ejs’ interface. 

© Francisco Esquembre, August 2002 90



Easy Java Simulations 3.1. The Manual  
 

 

5.7.2 Defining control actions 

Besides using this Custom part to create utility methods that help you simplify 
the coding of other parts in the model, we can also use this panel to prepare 
control actions that can be used to provide your simulation with a certain 
interactivity. 

Later, when we create a view for our simulation, we can include in it elements 
that will help the user trigger these actions (by clicking on a button, or 
dragging the mouse, for instance). 

Creating control actions consists in defining a series of methods that the 
user may want to call to modify the behaviour of the simulation. 

Control actions are created exactly in the same way as you create any other 
custom method. There are however some restrictions. For technical reasons 
(that would be very long to describe here) control actions, 

1. must be public,  

2. do not need to return any value (although they can do so, if you want), 
and  

3. must be declared with either an empty parameter list or with, at 
maximum, one single parameter. In this later case, this parameter can 
only be a boolean, an int, a double, or a String (arrays, for instance, are 
not allowed). 

 
Although it may seem a bit restrictive, I do believe that this can serve most, if 
not all, of your needs. 
 

Typically, the code of an action contains sentences that change the value of the 
variables of the model. Hence, their purpose is to set a given state of the model, 
which is of special interest for the user. 

Also, in some occasions, the user may also want to change the view: for 
instance, to show or hide a given component of the visualization. Changing the 
view is always done in a standard way; since you can link some properties of 
the elements of the view to model variables (as we will see in the next 
chapter), you only need to change these variables to make the view behave the 
way you want27.  

Finally, you may also need actions to control the execution of the simulation 
itself; for instance, to start and stop the evolution, to modify the execution 

                                                           
27 See, however, the predefined action _clearView() in next subsection. 

© Francisco Esquembre, August 2002 91



Easy Java Simulations 3.1. The Manual  
 

 

speed, to run the simulation step by step or to reset the simulation to its initial 
state. You don’t need to care about creating these ones; they are provided by 
Ejs itself.  

These predefined actions can be called either directly or as part of your own, 
more elaborated actions (for instance, you may want to stop the simulation, do 
some computation, clear the view and then restart the simulation). These 
actions are described in the next subsection. 

5.7.3 Predefined actions 
Ejs has some predefined Java methods that are very useful to control the 
execution of the simulation. It also has some methods that allow saving the 
state of the model to memory or to the local disk and reading it later either 
from memory, from the local disk or from a web server. This can be very 
useful if you want to prepare experiments that require an elaborated initial state 
of the model, in order to present it later to students. 

Since Java applets cannot write to the local disk, if you want to save the state 
of a simulation you have to run it either from Ejs or as an independent 
application (see chapter 4). 

To use any of the following methods, you only need to call them from your 
actions or link them to the actions property of an element of the view.  

For backwards compatibility, these predefined methods have a second way of 
calling them, one that makes its class (say, its family) explicit. For instance, 
the first method could be called either as _play() or as _simulation.play().   
 
I recommend using always the simplified method. However, I make this 
remark here in case you ever come across any of these while reading a 
simulation created with a previous release of Ejs. 
 

The following table lists these methods and their corresponding effect. 
Methods to control the simulation execution 

void _play ( )   ( or _simulation.play ( )  ) 
Starts the evolution 

void _pause ( )  (  or _simulation.pause ( )  )  
Stops the evolution 

void _step ( )  ( or _simulation.step ( ) ) 
Executes one step of the evolution 

void _setFPS (int fps)  ( or  _simulation.setFPS (int fps)  ) 
Sets the (approximate) number of evolution steps per seconds to the prescribed 
value 

© Francisco Esquembre, August 2002 92



Easy Java Simulations 3.1. The Manual  
 

 

void _setDelay (int delay)  ( or  _simulation.setDelay (int delay)  ) 
Sets the delay for the evolution to the prescribed value. This can be used to 
control, more precisely than with setFPS or Ejs’ Frames per seconds slider the 
speed at which the simulation should run. This method instructs Ejs to wait, 
after completing an evolution step, the number of milliseconds indicated by the 
integer value delay, before starting the new one. 

void _reset ( )  ( or _simulation.reset ( )  ) 
Resets all model variables to their initial values and executes all initialization 
pages 

void _initialize ( )  ( or _simulation.initialize ( )  ) 
Executes all initialization pages, but respects any change to the initial values of 
the variables that the user has done on the view. A call to initialize represents a 
initialization softer than reset, so to say. 

boolean _isPlaying ( ) 
Returns true if the simulation is running. 

boolean _isPaused ( ) 
Returns true if the simulation is paused. 

Methods to save and retrieve the state of the model 
boolean _ saveState (String filename)  (  or _simulation.saveState (String filename) ) 

Saves the value of all variables of the model in the specified file. If it succeeds, 
it return true, if there is any problem, it returns false.  
If the filename starts with the prefix ejs: then data is saved to a temporary 
memory location. You can read from this location during the same session of the 
simulation, as if it were a file, but the data will be lost when the simulation exits. 
This possibility is useful to temporary store interesting states to which you may 
want to come back later on (during the same session). 

boolean _ readState (String filename)  ( or _simulation.readState (String filename) ) 
Reads the value of all variables in the model from a file. If the string filename 
represents a URL location on the Internet, it will try to connect to the 
corresponding web server and read from it. If it succeeds, it returns true and 
automatically calls constraints equations and updates the view. 

Methods to change or read the value of variables using JavaScript 
boolean _ setVariables (String command, String delim, String arrayDelim) 
( or  _simulation.setVariables (String command, String delim, String arrayDelim) ) 

This method is used to set the value of any variable. It is of special interest when 
using JavaScript to control the application from an html file (see chapter 4). 
command is a string containing a series of instructions of the form var=value 
separated one from each other by the string delimiter delim, where var must be 
the name of a variable of the model and value an acceptable value for it. If the 
variable is a one-dimensional array, then the different values of the elements of 
the array must be separated by the string delimiter given by arrayDelim. 
For example: 

_simulation.setVariables(“x=1.0;y=0.0”,”;”,”,”); 
_simulation.setVariables(“matrix=1.0,2.0,3.0;y=0.5”,”;”,”,”); 

are valid uses of setVariables. 
boolean _ setVariables (String command)   
( or _ simulation.setVariables (String command) ) 

This is a simplified versionof the previous one. It is equivalent to  
_simulation.setVariables(command,”;”,”,”); 

© Francisco Esquembre, August 2002 93



Easy Java Simulations 3.1. The Manual  
 

 

String _ getVariable (String varName)   
( or _simulation.getVariable (String varName) ) 

This is the counterpart of setVariables. Given the name of a variable, it returns a 
string with its value. 

Methods to control the view 
void _clearView ( ) (or _resetView ( ) ) 

Clears the view and sets it to its default initial state. 
Methods to print in the view (if it contains a TextArea) 

void _print (String text) 
Prints the indicated text in the text area. If the view does not include a text area 
element, it prints the message to the standard output (usually the console). 

void _println(String text) 
Prints the indicated text in the text area, followed by a line feed and carriage 
return. If the view does not include a text area element, it prints the message to 
the standard output (usually the console). 

void _println() 
Prints a line feed and carriage return. If the view does not include a text area 
element, it prints to the standard output (usually the console). 

void  _clearMessages() 
Clears the text area. If the view does not include a text area element, this method 
has no effect. 

 

© Francisco Esquembre, August 2002 94



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 95

 

6 
6.  Creating a view with Ejs 

6.1  Graphical interfaces 
Without any doubt, creating the graphical user interface is the part of the 
simulation that demands, if you want to program it directly, more knowledge 
of advanced programming techniques which, to make the situation even worse, 
are different from one language to another. It also usually implies long 
searches in reference manuals looking for the right libraries and graphical 
routines. 

However, the advance of computer graphics makes a simulation without an 
advanced graphic visualization impossible to conceive. And, if it has to be 
used for teaching purposes, without a high level of interactivity. 

For these reasons, Ejs uses a simple, but powerful as we will see, graphic 
library of Java and has tried to simplify its use as much as possible. This 
library is based on Java’s Swing toolkit and on the Open Source Physics tools 
created by Wolfgang Christian at Davidson College28, but also contains my 
own contributions. Both set of tools are supported by Java 2 and its plug-in, so 
they can be visualized by most modern browsers. I will make a special 
presentation (that may be considered irreverent by purists) of this library that 
fits our needs: simple and effective… Here we go. 

 

We create a graphic interface for our simulation by building a tree-like 
structure of selected interface elements.  

An element is like a piece, or building block, of the interface that occupies a 
(usually rectangular) area of the computer screen and that performs a particular 
task on which it specializes. There are elements of several classes: panels, 
labels, buttons,… and an important part of learning the game consists in 
knowing which classes of elements exist and how to use and personalize them. 

                                                           
28 See http://www.opensourcephysics.org  

http://www.opensourcephysics.org/


Easy Java Simulations 3.1. The Manual  
 

 

The graphical appearance of each element is mainly determined by its class. 
However, every element provides some characteristics of itself, called 
properties, which the user can change to fit her needs. Also, some elements 
have properties of a special type, which I will call generically actions, to 
specify what to do when the user interacts with the element (making a gesture 
with the mouse or typing the keyboard).  

The names of element classes are rather descriptive of their natural use. 
However, the appendices include a description of all the elements that can be 
used in Ejs, grouped by functionality.  

To continue with our general description of elements, we only mention here 
one main classification among elements: Containers, Basic elements and 
Drawables. 

6.1.1 Containers (and Layouts) 
A container is a graphic element that can host other elements. If it does, we 
call the container element the parent and the contained element a child. Since a 
container can be at the same time parent and child, we can build a hierarchical 
tree-like structure made of graphic elements. At the root of this tree we find the 
main window, which is the one that first appears in the computer screen or the 
one we embed within an html page. 

There are, in turn, two main families of containers: containers which can hold 
basic elements and containers for drawables.  

The first type is made of containers which can hold other containers and basic 
elements (see next subsection). Both sets, altogether, are used to create the 
squeleton of the user interface of the simulation.  

The second type is made of specialized containers that can only host drawable 
elements (see subsection 6.1.3) as children. We’ll refer to them in the 
appendices as containers for drawables (what else?☺). These containers and 
its children drawables are used to animate drawings or display graphs of the 
simulated phenomenon. 

 

An important property of a container of the first family that we must also cover 
here is the layout. When a child element is added to a container, the parent 
gives the child a position and size according to the available space, the 
demands of other children and, so to say, to its own hosting policy. This is 
what we call the layout policy, or simply layout. Some layouts give the child 

© Francisco Esquembre, August 2002 96



Easy Java Simulations 3.1. The Manual  
 

 

the opportunity to choose a position within the parent, though in most others 
this position is a consequence of the “order of birth” of the child. 

I recognise that, in a first approach, layouts usually seem a nuisance. However, 
they are actually very useful because they help control the appearance of the 
interface if the user changes the size of the main window, or the length or fonts 
of the texts (something that happens very often). When the parent gets its size 
changed, it takes care of resizing its children so that they fully cover their 
respective position. After a bit of practice, the use of layouts becomes very 
natural. 

We shall only use the following basic layouts: 

• FlowLayout, which places children in a row, from left to right, 
very similarly to how words are placed in a paragraph. Children 
can be left, center or right aligned. 

• BorderLayout (perhaps the most popular), which places children 
in one of five positions: north, south, west, east and center, from 
which the children can choose.  

• GridLayout (the second most popular) which places children in a 
rectangular grid with as many rows and columns as we specify. 

• Horizontal Box. This works very much as a grid layout with one 
single row. However, differently to the grid, it doesn’t force all its 
children to have the same size. 

• Vertical Box. This is the vertical version of the previous one. 

For these layouts, we can also specify the gap separating, horizontally or 
vertically, one child from the next one. 

6.1.2 Basic elements 
The group of basic elements is composed of a series of interface elements that 
can be used to decorate the view, to display and edit variables and also to 
trigger model actions.  

These elements are very popular in most interactive programs and include 
labels, buttons, sliders, editing fields… 

Basic elements can be added to containers (of the first family) but can not host 
other elements (that is, they are not containers themselves). 

© Francisco Esquembre, August 2002 97



Easy Java Simulations 3.1. The Manual  
 

 

6.1.3 Drawables 

The set of drawables is one of the main contributions of Open Source Physics 
project to Ejs. It consists of a series of view elements that can be included in 
dedicated containers (those of the second family described above) to display 
animated graphics that visualize the model states.  

These animated graphics range from the simple to the very sophisticated, and 
include particles (represented as ellipses or rectangles), arrows, images, 
polylines, vector fields, contour plots, three dimensional bodies,… and a lot 
more. 

6.1.4 Creating a View 
All together, creating the view consists in generating a structure of elements 
that fits our needs. This structure must include: 

a) elements that visualize the state of the model, 
b) elements for user interaction with the simulation, and 
c) containers that host all other elements. 

6.2  Linking variables to properties 
As we said before, graphic elements have certain internal values, called 
properties that can be customized to make the element behave in a particular 
way. 

Because we are not only interested in creating nice computer graphics, but also 
in visualizing our model state using interactive interfaces, we want to use our 
model variables and actions as values for some of these elements properties. I 
will refer to this process as linking model items with view properties. 

Really, if we just create a model and a view for our simulation, but we don’t 
instruct the view about how to use model variables and actions, we could run 
our simulation, but our view would display nothing of interest. It is only when 
we establish the appropriate links that the view conveys useful information 
about our model. 

In standard programming, these links are always created using predefined 
methods of the graphic components, which do what we want on the elements 
of the interface. The problem is that, since elements have been created for 
generic purposes, these methods are of a very low level. 

Ejs dramatically simplifies this situation by having tailored all the elements 
that we will use under a linking scheme where all you need to do is to edit a 
panel with the properties of the element and indicating in each property field, 

© Francisco Esquembre, August 2002 98



Easy Java Simulations 3.1. The Manual  
 

 

which value you want to use for it. In most cases, you can do so this by 
choosing from a list of acceptable values the one that fits your needs. 

Later, when running the simulation, Ejs automatically takes care of all the 
internal calls to Java methods needed for these links to work properly. 

Linking is a two-way, dynamic process. This means that, at any moment, the 
property of the element will reflect whatever value the linked variable holds. 
And viceversa, if the property changes as a result of the interaction of the user 
with the view (such as typing in a new value, or moving a scrollbar), the 
variable of the model will receive the new value. 

If an action is linked to an element action property, whenever the element is 
required to execute its action (for a button, for instance, when you press on it), 
the corresponding model action is called. 

6.3  How a simulation runs 
Once we have established the connections among the three parts of a 
simulation, we can complete the description of running a simulation that we 
started in section 5.1.3. 

1. Variables are created and their values are set to those indicated in the 
initialization step. 

2. The control and the view are created. The view appears on the 
screen. 

3. Constraint equations are evaluated (since the initial value of some 
variables may depend on the initial values of other variables). 

4. Control actions are linked to the actions of components of the view. 
5. The model uses its connection to the view so that the latter displays 

the state of the model. 
Now, the model is in its initial state, the view reflects it, and the simulation 
waits for an evolution step or for the user to interact with it. 

6. In the first case, evolution equations are evaluated and, immediately 
after, constraint equations. We then reach the new state of the model 
in a new instant of time and the view is updated using the connection 
from the model. 

7. In the second case, when the user changes a variable, constraint 
equations are evaluated and we obtain a new state of the model 
within the same instant of time. The view is updated using the 
connection from the model. 

© Francisco Esquembre, August 2002 99



Easy Java Simulations 3.1. The Manual  
 

 

6.4  Building the view 
The interface of this part of Ejs looks as follows. 

 

A panel that shows the (initially empty) structure of elements of the interface 
occupies the left-hand side of the working area of Ejs. When we add elements 
to this structure, this panel will be displaying them in a tree-like form. 

The right-hand side of the working area contains three sets of icons, grouped 
by functionality, according to the categories described in section 6.1 . Each 
icon represents a class of elements that can be added to our view.  

 

Elements in the first set of icons are used to 
add container elements to our view 
(containers were introduced in subsection 
6.1.1). 

© Francisco Esquembre, August 2002 100



Easy Java Simulations 3.1. The Manual  
 

 

The first class of elements that we need to mention from this group is the 
Frame class. It has the icon  and if you place the mouse over it and wait for 
a second, a small caption will appear that reads ‘A top level window’.  

Every view needs at least an initial window in which we will place all other 
elements. The appropriate elements for this task are frames. They know how to 
handle all the interaction with your operating system windowed screen.  

The icon , below the previous one, represents a slightly different class of 
basic windows, that of Dialogs. Dialogs are also windowed elements, but 
(unlike frames) they do not exit a simulation when they closed29. Hence, since 
you want to be able to somehow exit your simulation definitely, your 
simulation view needs to have at least one frame element. 

On its defense, dialogs have the ability to stay always visible on top of the 
frame that was created before them. This is very useful in multi-windowed 
simulations when you want to keep secondary windows (dialogs) always 
visible on top of the primary ones (frames). 

Finally, and a bit separated from the previous two, a top row of icons 
represents other containers for basic elements (of which, without any doubt the 
most frequently used is the basic panel ), and a bottom row displays 
different classes of containers for drawables, both for 2D and 3D drawings. 

There are, at this moment, three such containers, Drawing Panels, Plotting 
Panels and 3D Drawing Panels, their icons are ,  and , respectively.  

Please notice that, although elements of these classes are containers, their only 
purpose is to hold just drawables. Therefore you cannot create basic elements 
as children of them. Also, since drawables draw in a position and size 
determined by the value of their internal properties, these containers panels 
have no Layout property. 

 

The second set of icons holds elements that 
are used for basic operation. It features labels 
and buttons, which you can use to trigger 
actions, but also bars, sliders and fields, useful 
to display and modify model variables. 

 

                                                           
29 Closed means closed, not minimized. 

© Francisco Esquembre, August 2002 101



Easy Java Simulations 3.1. The Manual  
 

 

The final set of elements are of a special 
category called generically Drawables. They 
can be used, not to display the value of 
variables, but to perform certain drawings 
according to the value of their properties. 

This is very convenient to make your visualization of the model state a bit 
more alive, and not just the cold display of figures.  

Let me say it once more, Drawables need to be added as children of the special 
containers described above that can handle their drawing peculiarities.  

6.4.1 Adding elements to the view 

The creation of new view elements follows next four steps. 

Step 1. Select the class of the element to be created 

Just click on the icon which represent the class that you want to create. The 
background of the icon will change color, thus indicating that it is active. Also, 
the cursor, which is by default an arrow (that changes temporarily to a pointing 
hand when you are on top of an icon) will change into a magic wand, . 

 

Step 2. Select the parent for the new element 

For this, it suffices to click on a container component from the tree of 
components shown on the left panel. If you are creating a windowed element 
(that is, a frame or a dialog) which requires no parent, you have to click on 
Simulation View, the root node of the tree. 

© Francisco Esquembre, August 2002 102



Easy Java Simulations 3.1. The Manual  
 

 

 

Step 3. Select a name for the new element 

The new element needs a name. Ejs will 
propose you a name for the new element, 
but you can give it any other name (recall, 
however, naming conventions stated in 
subsection 5.3.3).  

Step 4. If necessary, select a position for the new element 

Only if the layout of the selected parent is 
BorderLayout, you will be prompted to choose 
a position (north, south, …) for the new 
element as child of it30.  

If the parent already has children, make sure not to choose a position that is 
occupied by a previous child. This could turn into strange configurations, with 
one child hiding another. 

 

And this is all! The new element is created for you and allocated in the right 
place. 

 
                                                           
30 I include the picture here to illustrate the step, but it does not corresponds to the same sequence that 
previous pictures show, since a frame that is created on the Simulation View root node does not need to 
choose a position. 

© Francisco Esquembre, August 2002 103



Easy Java Simulations 3.1. The Manual  
 

 

6.4.2 Modifying the tree 

Once we have created a tree by adding all the elements we need, or also while 
we are in the process of building it, we can modify the tree structure in 
different ways. This is sometimes necessary to correct any minor mistake that 
we might have incurred into, or simply to modify our initial configuration due 
to a change of mind or to new requirements. 

For this purpose, every element in the tree 
(except the root node) has a popup menu 
that we can bring in by right-clicking the 
mouse over it. The figure shows a simple 
view with the pop-up for one of its 
elements, panel2, on top. 

This menu varies a little bit depending on 
the actual element that you select. But the 
picture shows a typical example. 

The first entry in the menu allows you to 
bring in the edition dialog for the element 
properties. This, the most frequent option, 
will be described in the next section.  

The second option allows you to change the name of the element, and the third 
can be used to change its parent. 

 

In both of these cases, a dialog will appear 
to ask you for the new name, or for the 
new parent, respectively. The picture 
shows the dialog for reparenting. 

In a second group in the menu, we find the options that help us change the 
position of the child within its parent. A label indicates us the current position 
of the element in the parent and, if the parent has border layout (as in the case 
shown in the picture), the first option allows us to change the position.  

If the parent had a different layout, one that imposes the position on its children 
according to its order of creation, this option would be disabled. In this case, 
we can still change the position of the element by changing its relative order. 

The last two options in this group let us change the position by moving the 
element up or down in the tree hierarchy (without leaving its parent). 

© Francisco Esquembre, August 2002 104



Easy Java Simulations 3.1. The Manual  
 

 

A final option, which is separated from the rest, simply removes the element. If 
the element is a container, it will also remove all its children. Actually, the 
whole part of the tree that hangs from it (so, please use it with care!). 

 
A  S P E C I A L  O P T I O N ,  O N L Y  F O R  F R A M E S  

A special option that appears only in menus for frames is the one labeled Main 
Window. Perhaps you noticed that while the icon for the Frame class is , it 
appears as  when you create your first frame. However, if you add more 
frames to your view, they will be displayed with the original icon. This has a 
special meaning. 

When a simulation is run as an applet, within 
an html page (see chapter 4), you can choose 
which of your frames will be captured and 
form part of the html page itself. Only the 
Main Window will be captured, all other 
frames (also dialogs) will appear in separate 
windows. 

This option, that the picture shows selected 
for our mainFrame, allows you to select 
which of your frames will be your main 
window. 

6.5  Editing properties 
When we create new elements, they appear with default values for their 
properties. As said before, properties are internal values that determine how the 
element behaves and looks on the screen.  

We can modify these properties using the edition dialog for the properties of 
the element. We do this by selecting the first option of the element popup 
menu, as described in previous subsection.  

© Francisco Esquembre, August 2002 105



Easy Java Simulations 3.1. The Manual  
 

 

The picture below shows the edition dialog for an element of the class Button. 

 

The way to modify a property is rather straight-forward. You click in the 
corresponding field and type in the value you want to give to the property. 

Sometimes, however, it is not so easy to remember the right format for some 
of these values, specially in cases where the property is a technical one, like 
color, layout, and font, for instance. For this reason, the text fields have a first 
utility button (we’ll talk about the second utility button in a minute) with a 
descriptive icon to its right. 

 

If the icon is this one , then there is no help to edit this field: you need to 
type in the value that you want. Usually in this case, the property is a simple 
one, like the text that appears on the buttons or labels or on the titles of frame 
or just numerical constant values. 

 

If the icon is the following , then this implies that Ejs has a dedicated 
special editor to help you choose a valid value for it. I recommend that you 
always use this editor when offered to.  

© Francisco Esquembre, August 2002 106



Easy Java Simulations 3.1. The Manual  
 

 

Pictures below show the dedicated editors for layout, color and font, 
respectively. They all work in a pick and choose manner. 

 

Finally, if the button is disabled, then this property can only be linked to a 
model variable or action (see below). 

 

There is a second column of utility buttons, one for each property field, that 
show either the icon  or . Recall that properties can also be linked to 
variables from the model; this button will help you do just this. Linking 
properties to model variables is at the heart of dynamic interactive interfaces. 

If you click on a button with the link icon, , a dialog with a list of all model 
variables that can be chosen appears. Since the property you are editing may 
require that the variable you associate to it is of a special type (i. e., boolean, 
int,…) only model variables of the corresponding type appear in this dialog. To 
select one of the variables, click on it and then on Ok. 

For instance, if we click on the button 
to the right of the Enabled property of 
the button, we will get a list of all 
boolean variables of our model.  

 
The list in the picture above assumes that your model has declared a boolean 
variable called isVisible. Besides the boolean variables of the model itself, the 
list also includes, in case they are of use for you, the two boolean variables 
provided by the system, namely _isPlaying and _isPaused which are true if 
the model is playing and paused, respectively. These are displayed in blue 

© Francisco Esquembre, August 2002 107



Easy Java Simulations 3.1. The Manual  
 

 
color, while model variables are displayed in the model family color, red. Your 
choice will be displayed in green. 

Finally, if this second button shows the action icon, , this means that the 
property belongs to the category of actions. That is, that you can link this 
property with a model action, or with one of Ejs’ predefined actions, so that, 
when you interact with the element, in a form that depends on the element and 
on the particular action property, the corresponding action will be called. 

If we click on the  button, a dialog listing all the actions that you can choose 
will appear. 

 

Again, the list displays in blue color Ejs’ predefined actions and in red 
(model’s favourite color) model actions. 

 
S P E C I A L  C A S E  1 :  P R O P E R T I E S  O F  T Y P E  STRING  

You may have notice that there might be an ambiguity in the case of a property 
which accepts a String as its value.  

For instance, if we edit the property Title of a frame and give to it the value 
main : does this mean that the frame should display the word ‘main’ or rather 
that main is a variable and that the frame should display whatever value main 
holds? 

In most cases, the property decides what is the option most frequently used and 
will take this as the desired result. However, there is a way to clearly solve this 
ambiguity:  

• typing the constant String value either between quotes or inverted 
commas will force the element to take this entry as a constant value. In 
our example, write ‘main’ or “main” 

© Francisco Esquembre, August 2002 108



Easy Java Simulations 3.1. The Manual  
 

 

• typing the variable between percent characters %, will force the 
elementy to consider this a variable. In our example, write %main% 

In any case, this ambiguity can occur if you type directly the value for the 
property. If you use the dedicated editors, the system will include the necessary 
distinction tags. 

 
S P E C I A L  C A S E  2 :  P R O P E R T Y  S IZE  OF  WINDOWS 

Windowed elements, that is, frames and dialogs, show a special behavior that  
allows to modify their size in an interactive form. When editing their Size 
property, i.e. their size on the screen, you can follow any of the previous two 
procedures or, additionally, resize the window on the screen in the way you 
normally use to resize windows in your operating system environment. When 
you resize the window, the actual values are reflected automatically on the 
field for the Size property. 

6.6  Learning more about view elements 
And this is, basically, all you need to know about view elements!  

Of course, you still need to master all the elements that you can use within Ejs. 
But for this, you’ll need to refer to the appendices. You will find there a 
description of each class of element, together with information about their 
properties and how to modify them. 

 

We will close this manual creating a second complete simulation. Please read 
it completely, because there are some other, though minor, things to learn that 
you will only find referenced there. 

I also recommend, once more, that you don’t forget to have a look at the 
examples bundled with Ejs. I think you will find lots of tricks and ideas for 
your own simulations in them. 

© Francisco Esquembre, August 2002 109



Easy Java Simulations 3.1. The Manual  
 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 110



Easy Java Simulations 3.1. The Manual  
 

 

© Francisco Esquembre, August 2002 111

 

7 
7.  A second example: predator-prey 

systems 

Let us create a second complete example to illustrate some other aspects of the 
process of writing a simulation. For this we choose an interesting phenomenon 
from the domain of population dynamics: the well-known dynamical system of 
a predator and its prey. 

7.1  Description of the phenomenon31 
During the middle 20’s (1920’s), Italian biologist Humberto d’Ancona 
discovered, studying the volume of different species of fishes captured in the 
Mediterranean Sea during the First World War, that the percentage of selacii 
(sharks, rays, dogfishes), a type of fish, in general, not appropriated for human 
consumption, had increased significantly. 

Obviously, the number of total captures had decreased during the war and, 
consequently, the number of fishes in the sea should be larger, but this did not 
explain why the reduced level of fishing was benefiting, in relative terms, 
selacii versus other fishes. 

A possible explanation was that selacii are predators that eat, among others, the 
same fishes as humans. Hence, when the fishing decreased, the volume of 
preys increased and selacii grew quickly in number. However, this argument is 
not consistent since lower levels of fishing should have also benefited the 
preys, in a similar percentage.  

The problem came then to the hands of the reputed Italian mathematician Vito 
Volterra, who proposed the following model (also studied independently by 
Lotka). 

Call x(t) and y(t) the populations of preys and predators, respectively, at instant 
t. Since fishes for human consumption do not strongly compete among 
                                                           
31 This description of the problem has been taken, with permission of the author, from the monograph 
Ecuaciones Diferenciales: cómo aprenderlas, cómo enseñarlas written by Dr. D. Víctor Jiménez 
López, Universidad de Murcia, 1999. 



Easy Java Simulations 3.1. The Manual  
 

 

themselves for food, because it is abundant, their number grow, in the absence 
of predators, according to the Malthusian law  x’ = ax, for some constant a>0. 
On the other hand, the number of contacts between predators and preys (which 
usually produce a fatal result for the prey), per time unit, can be written as bxy. 
We therefore obtain x’ = ax – bxy. 

Similarly, the number of predators increases according to their population y 
and available food x, and decreases according to their death rate. Putting 
everything together, we obtain: 





+−=
−=

dxycyy
bxyaxx

'
'  

for positive appropriate constants a, b, c and d. 

This is then our initial model for the simulation. We are interested in the 
evolution of the populations and of the average number of predators and preys 
along time.  

It is surprising to check that these averages do not depend on initial conditions, 
that is, on the initial number of fishes of both types (except the trivial case 
when one of them is zero). 

Furthermore, if we now introduce in the model the effect of fishing, that is, an 
amount proportional to both populations ex and ey, we get our final model: 





++−=
−−=

dxyyecy
bxyxeax

)('
)('  

It is even more surprising to check that a moderated level of fishing (e<a) has 
the effect of increasing (in average) the volume of fishes for human consume 
and decreasing the number of selacii. If the level of fishing is small (e<<a), we 
observe the opposite effect. 

This surprising result, known as Volterra’s Principle, explains satisfactorily 
the observations of D’Ancona. 

We will first create a simple simulation that implements this model and 
displays the evolution of the populations. In a second step, we will improve the 
simulation to let the student experiment with it: changing initial conditions, 
playing with the parameters and observing the result of her actions on the 
average number of predators and preys. 

© Francisco Esquembre, August 2002 112



Easy Java Simulations 3.1. The Manual  
 

 

7.2  Introduction 
We could create one or more introductory pages and write in them the 
introduction given above for this problem. Since doing this doesn’t imply any 
particular difficulty (but having the time to type all this text in), I suggest that 
you take a look at the finished simulation file included in the example 
PredatorAndPreyBasic distributed with Ejs, to see how this finally looks. 

The picture below shows the first page of the introduction for this example. 

 

7.3  Model 
7.3.1 Step 1: Define the variables 

From the equations above, we easily identify the state variables x and y, and 
the parameters a, b, c, d and e. They are all real numbers; hence we will use 
variables of type double. Though not explicitly mentioned, time is another 
variable, which we simply name t. 

© Francisco Esquembre, August 2002 113



Easy Java Simulations 3.1. The Manual  
 

 

It then suffices to create the following table of variables: 

 

7.3.2 Step 2 : Initialize the variables 
The initialization of the model is completed giving initial constant values to all 
variables, which we have already done in the previous step. This panel 
remains, therefore, empty. 

7.3.3 Step 3 : Write evolution equations 

This step is going to be straightforward, thanks to Ejs’ ODE editor. 

 

Notice that we have chosen to start automatically the evolution and a frames 
per second rate of 20, which implies a small delay in the execution of the 

© Francisco Esquembre, August 2002 114



Easy Java Simulations 3.1. The Manual  
 

 

simulation. We have also selected to apply the mid-point algorithm for the 
numerical resolution of the differential equations. 

7.3.4 Step 4 : Write constraint equations 

Our model needs no constraint equations.  

7.3.5 Running the model? 

The model for our simulation is now fully specified. If we ask Ejs to run the 
simulation, we will have our model running and, approximately 20 times per 
second, the differential equation will be solved and the values of x and y 
changed according to the evolution in time of our two populations. 

However, we will see nothing because we haven’t created a view for our 
model, and we will not be able to control the simulation (stop it, for instance). 

7.4  View 
For the view we will reuse a generic interface included with Ejs distribution. I 
we click on the Open an existing file button on the top toolbar, 

 

and move to the examples directory, we will find the file called 
_StandardView2D.xml. 

 

© Francisco Esquembre, August 2002 115



Easy Java Simulations 3.1. The Manual  
 

 

Files with a name that starts with an underscore character, like this one, have a 
special characteristic: they are not read, but merged. This means that they will 
not clear Ejs editors before reading whatever is in the file.  

Since the only requisite for creating a merge file is to give it a name that starts 
by ‘_’, you can also create your own favorite standard views. This can be of 
particular use if you (like me) have a tendency to use frequently the same kind 
of view configuration. 
 

Now, please merge this file and notice that 
this adds some elements to our empty view. 

The new view consists of a main frame with 
a simple Play-Pause-Reset control panel to 
its left and a central drawing panel. However, 
we will prefer to change the drawing panel 
for a plotting panel, since we want the axis to 
be automatically plotted, too. 

 

To achieve this, we first remove the 
element drawingPanel, … 

and then add a new plotting panel element, 
the one with the icon , in the central 
position of mainFrame. 

Now our view tree looks like this. 

 

© Francisco Esquembre, August 2002 116



Easy Java Simulations 3.1. The Manual  
 

 

After modifying mainFrame’s title property to Predator and Prey and its size, 
this is how our view looks like. 

 

We will also edit the properties of plottingPanel in order to change the titles 
and adjust the scales. Next picture shows the options we will take (I have made 
the changes visible by changing the background color of the corresponding 
fields, but please recall to hit return after typing the entries). 

 

To our view, we will now add two drawables 
that will display the evolution of the species 
by plotting the sequence of values (t,x) and 
(t,y).  

We do this by clicking on the icon for the 
Trace class  (its caption reads A sequence 
of points) to select it, and hitting with the 
magic wand on our plottingPanel. If we give 
the new elements the names predPopulation
and preyPopulation, this is the resulting tree. 

© Francisco Esquembre, August 2002 117



Easy Java Simulations 3.1. The Manual  
 

 

Finally, we edit the properties for these two trace element so that they can 
visualize our model variables appropriately. 

 

 

This is all we need to do. We are taking from the model the variables t, x and y 
and telling the view to display the pairs (t,x) and (t,y), up to a maximum of 300 
points. The Autoscale X  feature of plottingPanel will make it appear as a 
stripchart recorder.   

We don’t need to link the Action property of the buttons to the predefined 
actions _play(), _pause() and _reset(), because this was already done in the file 
that we merged in. You can inspect, if you want, the property edition dialog for 
these elements. 

7.5  Running the simulation 
We can now run our simulation. But, before doing so, we should give it a 
name32.  

Click on the Save icon  on Ejs’ top toolbar, move to your Ejs home 
directory by cliking on the  icon of the file dialog, and then type a 
descriptive name for our simulation, say, PredatorAndPrey. Then, click on 
Save. 

                                                           
32 If we didn’t give it a name, Ejs would use the default name Unnamed to generate our simulation, but it 
would not save it. 

© Francisco Esquembre, August 2002 118



Easy Java Simulations 3.1. The Manual  
 

 

 

You can now run the simulation, just click on . A typical execution 
produces the following picture. 

 

Let me say, once more, that a given model can be linked to different views. For 
instance, in our example, we could have chosen to display the phase diagram 
given by the sequence of points (x,y), instead of the time diagrams (t,x) and 
(t,y).  

7.6  Improving the use of our simulation 
Even when it solves the model correctly and the view displays the evolution of 
the populations, the didactical use of our simulation is very limited because of 
the fact that it permits almost no user interaction. 

What we really want is to let the student set different initial conditions for the 
model and check, if only visually, that the average of preys remains the same. 
Also, we want her to realize Volterra’s Principle, that is, let her increase the 
level of fishing and obtain a higher average of fishes for human consumption. 

© Francisco Esquembre, August 2002 119



Easy Java Simulations 3.1. The Manual  
 

 

Of course, the student could use directly Ejs and modify the initial values on 
the table of variables and run once and again. There is however a second 
approach that consists in giving the final simulation a reasonable amount of 
interaction. We will do this now. 

7.6.1 Changes to the model 
Go back to the variables table and add two more double variables, x0 and y0, 
our initial conditions, and give them the values 0.7 and 0.2, respectively. 

 
 
 
 
 
 
 
 
 
 
  

Now, in the Initialization panel, create a new page, say Initial Conditions,  and 
type in the following code: 

 

The effect of this code is to initialize our state variables t, x and y to the initial 
conditions t=0, x(0)=x0 and y(0)=y0. 

You may think that this is not necessary since, after taking the initial values 
from the table of variables, these variables have precisely these values. Well, 
you are right, but… what would happen if we called _initialize(), instead of 
_reset()?… Please wait a little bit for an explanation. 

We don’t need any further change to the model. 

© Francisco Esquembre, August 2002 120



Easy Java Simulations 3.1. The Manual  
 

 

7.6.2 Changes to the view 

First of all, we want to add a new button that will call _initialize(). For this, 
select the button class and hit with the magic wand on panelButtons. Give the 
new button element the name Initialize. 

 

Since we gave it a name which also serves for the text for this button, we only 
need to edit its Action property and link it with the predefined method 
_initialize(). 

 

© Francisco Esquembre, August 2002 121



Easy Java Simulations 3.1. The Manual  
 

 

We also add to panelButtons a checkbox which we name Parameters and 
edit its properties as follows. 

 

You could object that we have no variable in the model with the name 
showDialog. And you would be right. What this example tell us is that the 
view can have its own variables, that don’t even need to be declared 
beforehand. If they happen to have the same name as an existing model 
variable, then they are linked, if they don’t, the view assumes that you want to 
create a new view variable. We’ll see the use of this soon. 

We now add a dialog  window to the view (hit the magic wand on the  
SimulationView node), with name parametersDialog, and edit its properties to 
look like this. 

 

Please take special care to type showDialog exactly as you typed it before. Any 
change in case would make it different. 

Now, you can see what is the use of having internal variables in the view.  

Even if there exist no model variable counterpart, the view can share 
information among its different elements using its own internal variables. You 
can check that now, if you select and unselect the Parameters checkbox, the 
parametersDialog appears and dissapears from the screen. Also, if the dialog 
is visible and you close it (in the way you close windows in your operating 
system) the checkbox is unselected.  

© Francisco Esquembre, August 2002 122



Easy Java Simulations 3.1. The Manual  
 

 

Although you could have used a model variable for this, there is really no need 
to declare one if you are not going to modify it in the model’s logic. 

 

Finally, we add view elements that will let the user modify the parameters of 
the model (i.e. , x0, y0, a, b, c, d and e) by interacting with the view. One of my 
favorite element classes for doing this is the Slider class . 

We need to add six of them to parametersDialog. Since the dialog has 
GridLayout, we don’t need to specify the position of each; the parent will be 
placing them according to the order in which you create them. 

Give them the names sliderX0, sliderY0, sliderA,… and so on. This is how the 
final tree and parametersDialog look like for me. 

 

 

Ok, I agree. The sliders don’t look very nice, right now. Please wait, we need 
to customize them so that they properly display the value of our variables. 

© Francisco Esquembre, August 2002 123



Easy Java Simulations 3.1. The Manual  
 

 

Edit the properties of sliderX0 in the following way. 

 

For the sliderY0 use the same values for the properties, but using y0 instead of 
x0, and y init = 0.00 instead of x init = 0.00. 

Now, for each of the sliders for the other parameters, edit their properties to 
look like this. 

 

Of course, this is for sliderA. For the others, replace a with the name of the 
corresponding parameter (exceptionally, for sliderE leave Maximum at 1.0). 

The final look of parametersDialog should be similar to the one shown in the 
next picture. You can notice that (they look much nicer and) the sliders display 
the actual value, as given in the table of variables, of the corresponding 
parameter. 

© Francisco Esquembre, August 2002 124



Easy Java Simulations 3.1. The Manual  
 

 

 

7.6.3 Running the simulation again 
If you now run the new version of the simulation, you will see that it runs 
pretty much like the previous one. However, if you click on the Parameters 
checkbox, the dialog with the sliders appears. 

You can modify the values for the parameters and see that the evolution of the 
populations change. I reduced the fishing to about half of its initial value at 
(approximately) t=20.0 and this is what I obtained. 

 

Can you appreciate what happens to the relative averages of both 
populations?… Volterra’s Principle! 

© Francisco Esquembre, August 2002 125



Easy Java Simulations 3.1. The Manual  
 

 

If you now click on Reset, the 
simulation changes back to it exact 
initial state. 

However, if you modify the 
parameters and click on Initialize you 
will notice that the time is reset to zero 
and x and y take the values of x0 and 
y0, but the value of the parameters that 
you edited using the view, including 
the initial state (x0,y0), is respected. 

This is the subtle difference between Reset and Initialize. 

 

7.7  A final methodological remark 
Some academics (see http://www.colos.org), which I respect, would complain 
that the model we have created for this example does not correspond to a real 
simulation. Their claim is that Nature doesn’t solve differential equations and 
that we are not simulating the real phenomenon, but a mathematical model of 
the phenomenon. 

Furthermore, they consider that there is an important pedagogical value in 
going a step closer in our simulation models to how Nature really does things. 

If you think this claim is (at least, partially) right, take a look at the sample 
simulation PredatorAndPreySimulation. I tried myself to provide there a 
different approach to this phenomenon. 

© Francisco Esquembre, August 2002 126

http://www.colos.org/


Easy Java Simulations 3.1. The Manual  
 

 

 

 

Appendices 

Because the appendices pages can vary independently from 
the rest of the manual and, in order to facilitate future 
updates, the appendices are provided as a separate 
document. 

© Francisco Esquembre, August 2002 127



Easy Java Simulations 3.1. The Manual  
 

 

This page intentionally left blank 

© Francisco Esquembre, August 2002 128


	PART I. Getting Started
	Introduction
	What is Easy Java Simulations?
	How to use this manual
	Acknowledments

	Before we start
	Documentation
	Installation Instructions
	Organizational information
	Running Easy Java Simulations
	Launching the program
	Reading a sample simulation
	Running the example


	A first complete example
	The structure of a simulation
	Lissajous’ figures
	Writing an introduction
	Building the model
	Defining the variables of the model
	Initializing the model
	Writing evolution equations
	Writing constraint equations
	Saving our work

	Creating the view
	The oscilloscope’s display

	Running the simulation
	Gallery of horrors (debugging)

	Adding interactivity
	Defining custom actions
	Adding interface buttons for our actions

	Running the complete simulation
	Adding some more interactivity

	Using your simulation
	What happens when you run a simulation
	Ejs configuration options

	Running your simulation as an applet
	What is in the html file
	JavaScript control of the simulation
	Adding your own html text

	Running your simulation as an application
	Distribution of simulations

	PART II. Detailed description
	Building models with Ejs
	Definition of a model
	The initial state of a model
	Evolution and constraint equations
	Running the model

	Ejs interface for the model
	Declaring variables
	Types of variables
	Creating variables
	Naming conventions

	Initializating the model
	Evolution equations
	Setting the execution environment
	Writing equations
	Declaring an ODE

	Writing constraint equations
	Custom methods
	Creating your own methods
	Defining control actions
	Predefined actions


	Creating a view with Ejs
	Graphical interfaces
	Containers (and Layouts)
	Basic elements
	Drawables
	Creating a View

	Linking variables to properties
	How a simulation runs
	Building the view
	Adding elements to the view
	Modifying the tree
	A SPECIAL OPTION, ONLY FOR FRAMES


	Editing properties
	
	SPECIAL CASE 1: PROPERTIES OF TYPE STRING
	SPECIAL CASE 2: PROPERTY SIZE OF WINDOWS


	Learning more about view elements

	A second example: predator-prey systems
	Description of the phenomenon
	Introduction
	Model
	Step 1: Define the variables
	Step 2 : Initialize the variables
	Step 3 : Write evolution equations
	Step 4 : Write constraint equations
	Running the model?

	View
	Running the simulation
	Improving the use of our simulation
	Changes to the model
	Changes to the view
	Running the simulation again

	A final methodological remark

	Appendices

